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Introduction

A novel imaging technology, scanning microwave-induced-acoustic tomography, will be
developed for breast imaging. X-ray mammography and ultrasonography are the current clinical
tools for breast-cancer screening and detection. Mammography is the “gold standard”, however,
uses ionizing radiation and has difficulties imaging pre-menopausal breasts, which are
radiographically dense. Ultrasonography is an adjunct tool to x-ray mammography and cannot
detect many of the nonpalpable tumors. The cure rate of breast cancers is improved if they are
detected early. To provide a new non-invasive, non-ionizing diagnostic tool for detection of early
breast cancers, we will develop real-time microwave-induced-acoustic tomography for breast
imaging. Microwave-induced-acoustic tomography is based on the photoacoustic effect,
generation of acoustic wave by deposition of short-pulse electromagnetic energy safely into
biological tissues. The microwave for this technology is short-pulsed, and its power is within the
IEEE safety limits. The microwave-induced acoustic wave is then detected with an ultrasonic
detector for imaging. The contrast between tumors and normal tissues in the microwave regime is
significantly better than other imaging modalities. Cancerous breast tissues are found to be 2-5
times more strongly absorbing than surrounding normal breast tissues in the microwave, which
has been attributed to an increase in bound water and sodium within malignant cells. However,
pure-microwave imaging is fundamentally limited to poor resolution (on the order of 10 mm)
because of the large wavelength of microwave. Ultrasonic imaging has good resolution (on the
order of 1 mm) but has a poor contrast between tumors and normal tissues. Microwave-induced-
acoustic tomography combines the contrast advantage of pure-microwave imaging and the
resolution advantage of pure-ultrasonic imaging, therefore, has the potential for detection of early
breast cancers and for assessing and monitoring treatments as well.
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In this section, we present our study of pulsed-microwave-induced thermoacoustic tomography in
biological tissues. A short-pulsed microwave source was used to irradiate the tissue samples, and
the thermoacoustic waves excited by thermoelastic expansion were then measured by a wide-
band ultrasonic transducer along a circular path that encloses the sample under study. The
acquired data were then used to reconstruct the microwave absorption distribution. Both an
exact reconstruction solution and an approximate modified backprojection algorithm were
derived. Experiments demonstrated that the images calculated by the backprojection method
agreed with the original samples very well, and the spatial resolution in reconstruction was as
good as 0.5 millimeter (500 micrometers).

Introduction to thermoacoustic tomography
In thermoacoustic tomography, a short-pulsed microwave source is used to irradiate the tissue.

Absorbed microwave energy causes thermoelastic expansion and radiates thermoacoustic waves
from within the irradiate tissue. The relatively long wavelength of the microwave, €.g., ~3 cm at
3 GHz in tissues, serves to illuminate the tissue homogeneously. The microwave heating must
be rapid to produce thermoacoustics waves; in other words, static temperature distribution or
slow heating cannot produce thermoacoustic waves. A wide-band ultrasonic transducer can then
be employed to acquire the thermoacoustic signals excited by thermoelastic expansion, which
carries the microwave absorption property of the tissue. The ultrasonic transducer is very
sensitive in detecting small vibrations from an object that are caused by weak energy absorption.

The key problem with this technique is how to determine the microwave absorption
distribution from the measured data, i.e., how to map the inhomogeneity of the tissue. One
approach is to use focused ultrasonic transducers to localize the thermoacoustic sources in linear
or sector scans and then construct the images directly from the data as is often done in pulse-echo
ultrasonography. An alternative method is to use wide-band unidirectional point detectors to
acquire thermoacoustic data and then reconstruct the microwave absorption distribution. To
date, we have not seen an exact inverse solution for this specific problem, although some
researchers have arrived at approximate reconstruction algorithms, such as the weighted delay-
and-sum method, the optimal statistical approach, and the Radon transform in far field
approximation.

Based on spherical harmonic functions, we first deduced an exact solution of the problem
in the three-dimensional case, which can be carried out in the frequency domain. We assume that
the wide-band unidirectional ultrasonic transducer is set on a spherical surface, which encloses
the sample under investigation. The data acquired from different directions are sufficient to
allow us to reconstruct the microwave absorption distribution. .In our case, the diameter of the
sphere of detection is much larger than the ultrasonic wavelength. Next, an approximate
algorithm is deduced, which is a modified backprojection of a quantity related with the
thermoacoustic pressure. This approximate algorithm can be carried out in the time domain and
is much faster than the exact solution. We have also tested a set of tissue samples. These
experiments demonstrate that the images calculated by the modified backprojection method agree
with the original samples very well. Moreover, the images have both the high contrast associated
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with pure-microwave imaging and the 0.5-millimeter spatial resolution associated with pure-
ultrasound imaging.

Results and discussion of thermoacoustic tomography

Spatial resolution
We quantified the line-spread function (LSF) of the imaging system. A metal wire with a

diameter of 0.2 mm was buried in pork fat and then imaged by our imaging system with a scan
radius of 75 mm. The thermoacoustic image of the embedded wire is shown in Fig. 1(a). Fig.
1(b) shows the profile of the LSF across the wire, where the ringing is caused primarily by the
limited bandwidth of the detected signals. The full width at half maximum (FWHM) of the LSF .
is 0.5 mm. In analogy to the Rayleigh criterion, an alternative definition of spatial resolution is
the horizonal displacement between the maximum and the first minimum of the LSF, which is
0.55 mm [Fig. 1(b)]. The superposition of two LSFs that are 0.55 mm apart is shown in Fig. 7(c),
in which two represented wires can be clearly distinguished. Because the wire has a 0.2-mm
diameter, the actual resolution is as fine as 0.35 mm, which agrees with the theoretical limit for
2-MHz thermoacoustic signals whose half wavelength is 0.38 mm in soft biological tissues.
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Fig. 1. (a) Thermoacoustic image of a wire of 0.2 mm in
0. DL diameter. (b) Profile across the wire, which

) approximately represents the line-spread function (LSF).
: (c) Superposition of two LSFs that are 0.55 mm apart.
wodAA_A N /A A ../ | The dip between the two peaks indicates the two LSFs

Vv YV can be distinguished at this separation.
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Of course, the detecting transducer has a finite physical size. If it is close to the
thermoacoustic sources, it cannot be approximated as a point detector. Its size will blur the
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images and decrease the spatial resolution. Therefore, in experiments, the transducer must be
placed some distance away from the tissue samples. In general, due to the finite size of the
transducer, the farther away the transducer is from the detection center, the better the resolution
at the expense of the signal.

Other factors limiting spatial resolution are the duration of the microwave pulse and the
impulse response of the transducer. In general, using a shorter microwave pulse will produce
more high-frequency components in the thermoacoustic signals. Selection of the duration of the
pulse is dependent on the experimental conditions and measurement systems.

Imaging of excised breast (mastectomy) tissues

Several excised breast (mastectomy) specimens were imaged at the University of Texas M.D.
Anderson Cancer Center using our thermoacoustic imaging system. A mammogram obtained
before the mastectomy surgery of the breast is shown in Fig. 2(a). After the surgery performed by
Dr. Hunt, the excised specimen was placed in a plastic cylindrical container with a diameter of
10 cm; and it was then imaged by three imaging modalities. The nipple of the specimen faced
the bottom of the container to simulate the proposed in vivo configuration. The thickness of the
specimen in the container was ~6 cm. The container had minimal effect on the transmission of
RF, ultrasound, and x-ray. Another radiograph of the specimen was taken from the top of the
cylindrical container [Fig. 2(b)]. The contrast of the lesion in Fig. 10(b) was lower than that
shown in Fig. 10(a) because the specimen was quite thick in the container. A conventional B-
mode gray-scale sonogram of the specimen [Fig. 2(c)] was taken by Dr. Fornage using a real-
time scanner (HDI 5000, Philips-ATL, Bothell, WA) equipped with a 5-12 MHz broadband
linear array electronic transducer. The lesion was located ~2 ¢cm above the bottom of the
container. The specimen was also imaged in the slice 2 cm above the bottom of the container
using our thermoacoustic imaging system [Fig. 2(d)]. A circular scan was carried out by a
cylindrically focused ultrasound detector (2.25 MHz center frequency and 0.9 mm diameter) with
a step size of 2-1/4 degrees. The scan radius was 7.5 cm. The reconstructed image was
computed by the backprojection method. The tumor was marked by a red circle. After these
imaging experiments, the specimen was rendered to the Department of Pathology for
histopathological diagnosis. This lesion was diagnosed as invasive lobular carcinoma with a size
of ~1.5 cm.

The yellow rectangle in Fig. 2(d) marks the wave-guide aperture. The wave-guide for this
experiment was not large enough to cover the entire specimen. Since then, we have upgraded our
system with a larger wave-guide to overcome this problem. More experiments on mastectomy
specimens using the improved imaging system have yet to be done.
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Fig. 2. (a) Pre-operative mammogram showing suspicious
density in the breast, which was taken with standard
compression. (b) Radiograph of the mastectomy specimen
placed in a plastic cylindrical container with a diameter of
10 cm. (c) Sonogram of the specimen in the container. (d)
Thermoacoustic image of the specimen in the container.
The yellow rectangle marks the wave-guide aperture. The
tumor is marked by a circle in (a), (b) and (d) and by two
white lines in (c).

Statement of Work
Task 1:Setting up the scanning microwave-induced-acoustic tomography (SMIAT) instrument,
Months 1-12:
a. Modify/connect the microwave generator and the ultrasonic scanner.
b. Image biological tissues in vitro with SMIAT.
Task 2.Extensive evaluation and optimization of the SMIAT setup, Months 13-36:
a. Simulate microwave-induced-acoustic signals to provide guidance on the
experiments.
b. Optimize the ultrasonic and microwave parameters for good resolution and signal-to-
noise ratio.
c. Quantify the maximum imaging depth with SMIAT.
d. Image biological tissues in vitro with SMIAT and quantify the imaging resolution.
e. Image biological tissues in vitro with SMIAT and ultrasonography and quantify the

contrast improvement of SMIAT over ultrasonography.
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f. Co-register the SMIAT iniages with the conventional ultrasonograms.

Both tasks have been successfully accomplished. We went beyond the original planned
task by imaging mastectomy specimens at M.D. Anderson Cancer Center.

Key Research Accomplishments

We have accomplished the following during the past year:

Further progress in the reconstruction algorithms (MP Aug. 2002 and IEEE-TBE 2003).
Better understanding of the mechanism of spatial resolution (PR 2003).

Better understanding of the effect of heterogeneity on the images (IEEE-UFFC 2003).
Extension of the technology to other electromagnetic sources (MP Dec. 2002).

Imaging of mastectomy specimens at M.D. Anderson Cancer Center in Houston

(unpublished yet).

Reportable Outcomes

Peer-reviewed journal articles

1.

M. Xu and L.-H. Wang, "Pulsed-microwave-induced thermoacoustic tomography:
Filtered backprojection in a circular measurement configuration,” Medical Physics
29 (8), 1661-1669 (August 2002).

X. Wang, Y. Xu, M. Xu, S. Yokoo, E. S. Fry, and L.-H. Wang "Photoacoustic
tomography of biological tissues with high cross-section resolution:
Reconstruction and experlment " Medical Physics 29 (12), 2799-2805 (December
2002).

M. Xu and L.-H. Wang, "Analytic explanation of spatial resolution related to
bandwidth and detector aperture size in thermoacoustic or photoacoustic
reconstruction,” Physical Review E 67 (5), 056605, 1-15 (May 2003).

M. Xu, Y. Xu, and L.-H. Wang, "Time-domain reconstruction algorithms and
numerical simulations for thermoacoustic tomography in various geometries,"
IEEE Transactions on Biomedical Engineering 50 (9): 1086-1099 (September
2003).

Y. Xu and L-H. Wang, "Effects of acoustic heterogeneity on thermoacoustic
tomography in the breast," IEEE Transactions on Ultrasonics Ferroelectrics and
Frequency Control 50 (9), 11341146 (September 2003).

Invited talks given by the PI

L.
2.

Clinical Center, NIH, Bethesda, Maryland.

Dept. of Biological Engineering, Univ. of Missouri, Columbia, Missouri.
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3. Dept. of Radiology, Univ. Chicago, Chicago, IL.
4. Dept. of Bioengineering, Univ. of Illinois at Chicago, Chicago, IL.

5. Annual Ultrasonic Transducer Conference, Univ. of Southern California, Los
Angeles, CA.

6. 3rd Int'l Conf. on Photonics and Imaging in Biology and Medicine, Wuhan, China.
Plenary.

7. 6th Int'l Conf. on Correlation Optics, Chernivtsi, Ukraine. Plenary.

8. Intl Conf. on Adv. Laser Tech., Cranfield, UK. Plenary keynote. Expenses
covered by host.

9. School of Electrical and Electronic Engineering, University of Nottingham, UK.
10. Institute of Cancer Research and Royal Marsden NHS Trust, Surrey, UK.

11.  Saratov Fall Meeting on Optical Technologies in Biophysics & Medicine, Russia.
Plenary. :

'12.  Frontiers in Optics, OSA Annual Meeting, Tucson, Arizona.

Degrees
e Y. Xu, Biomedical Eng., Texas A&M University.

e S. Jiao, Biomedical Eng., Texas A&M University.
Note: Both have defended successfully and the degrees will be conferred in Dec. 2003.

Conclusions
Since the previous report in 2002, we have published five peer-reviewed journal articles and
delivered 12 invited talks. For the invited plenary talk given at UK, all travel related expenses
were covered by the conference host. ’

The combination of ultrasound and microwave has provided us a unique opportunity for
early-cancer imaging with high resolution and high contrast. A good imaging modality should
have both high contrast and high spatial resolution. Our imaging technology combines
synergistically radiofrequency waves and ultrasonic waves, where the former provides high
contrast and the latter provides high spatial resolution. Only non-ionizing radiation is used. No
painful breast compression is required. In addition, our images are free of speckle artifacts,
which are prevalent in conventional ultrasound images. Our ultimate goal is to detect early
breast cancer. Specifically, we have made further progress in the reconstruction algorithms (MP
Aug. 2002 and IEEE-TBE 2003), in the mechanism of spatial resolution (PR 2003), in the
understanding of heterogeneity (IEEE-UFFC 2003), and in extending the technology to other
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electromagnetic sources (MP Dec. 2002). We went beyond the original planned task by imaging
mastectomy specimens at M.D. Anderson Cancer Center.

Appendices (58 pages)

1. [9 pages] M. Xu and L.-H. Wang, "Pulsed-microwave-induced thermoacoustic
tomography: Filtered backprojection in a circular measurement configuration,"
Medical Physics 29 (8), 1661-1669 (August 2002).

2. [7 pages] X. Wang, Y. Xu, M. Xu, S. Yokoo, E. S. Fry, and L.-H. Wang
"Photoacoustic tomography of biological tissues with high cross-section
resolution: Reconstruction and experiment," Medical Physics 29 (12), 2799-2805
(December 2002).

3. [15 pages] M. Xu and L.-H. Wang, "Analytic explanation of spatial resolution
related to bandwidth and detector aperture size in thermoacoustic or photoacoustic
reconstruction,” Physical Review E 67 (5), 056605, 1-15 (May 2003).

4, [14 pages] M. Xu, Y. Xu, and L.-H. Wang, "Time-domain reconstruction
algorithms and numerical simulations for thermoacoustic tomography in various
geometries," IEEE Transactions on Biomedical Engineering 50 (9): 1086-1099
(September 2003).

5. [13 pages] Y. Xu and L.-H. Wang, "Effects of acoustic heterogeneity on
thermoacoustic tomography in the breast," IEEE Transactions on Ultrasonics
Ferroelectrics and Frequency Control 50 (9), 1134-1146 (September 2003).
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Appendix 1

Pulsed-microwave-induced thermoacoustic tomography:
Filtered backprojection in a circular measurement configuration

Minghua Xu and Lihong V. Wang®

Optical Imaging Laboratory, Biomedical Engineering Program, Texas A&M University,

3120 TAMU, College Station, Texas 77843-3120

(Received 12 December 2001; accepted for publication 7 May 2002; published 16 July 2002)

Our study on pulsed-microwave-induced thermoacoustic tomography in biological tissues is pre-
sented. A filtered backprojection algorithm based on rigorous theory is used to reconstruct the
cross-sectional image from a thermoacoustic measurement in a circular configuration that encloses
the sample under study. Specific details describing the measurement of thermoacoustic waves and
the implementation of the reconstruction algorithm are discussed. A two-dimensional (2D) phantom
sample with 2 mm features can be imaged faithfully. Through numerical simulation, the full width
half-maximum (FWHM) of the point-spread function (PSF) is calculated to estimate the spatial
resolution. The results demonstrate that the circular measurement configuration combined with the
filtered backprojection method is a promising technique for detecting small tumors buried in bio-
logical tissues by utilizing microwave absorption contrast and ultrasound spatial resolution (~mm).
© 2002 American Association of Physicists in Medicine. [DOI: 10.1118/1.1493778]

Key words: microwave, thermoacoustics, tomography, imaging, filtered backprojection

I. INTRODUCTION

Pulsed microwave-induced thermoacoustic tomography
combines the advantages of both ultrasound spatial resolu-
tion and microwave absorption contrast.!~* The basic idea of
this technique is that a very short microwave pulse (<1 us)
heats a sample; the sample then absorbs the microwave en-
ergy and simultaneously generates temporal thermoacoustic
waves, which are strongly related to the locally absorbed
microwave energy. The microwave pulse is so short that the

"heat diffusion’s effect on the thermoacoustic wave can be

ignored. The thermoacoustic signals have a wide frequency
range up to MHz and carry the information of the microwave
absorption distribution with millimeter spatial resolution. In
practice, microwaves at 300 MHz-3 GHz with 0.1-1 us
pulse are often adopted, which offer penetration depths of
several centimeters in biological tissues. For example, the
penetration depths for fat and muscle tissues at 3 GHz mi-
crowaves are 9 and 1.2 cm, respectively.3 Most other soft
tissues have penetration depths in between those for muscle
and fat tissues. The wide range of values among various
tissues makes it possible to achieve high image contrast. In
addition, the long penetration depth allows this technique to
detect interior tumors.

In our initial studies, we used focused transducers with
big apertures to detect thermoacoustic signals with both the
linear scan®’ and the circular scan methods.* The big aper-
ture gives us a good signal-to-noise ratio (SNR), because the
SNR is inversely proportional to the square root of the aper-
ture area. Each scan line is converted into a one-dimensional
image along the axis of the transducer, and then cross-
sectional images can be obtained by straightforward calcula-
tions. The axial resolution is obtained by measuring the tem-
poral profiles of the thermoacoustic signals. However, the
lateral resolution is mainly determined by the focal diameter

1661 Med. Phys. 29 (8), August 2002

0094-2405/2002/29(8)/1661/9/$19.00

of the transducer.>® The image view is also limited by the
focal length of the transducer.

An alternative method is to use unfocused transducers
with small apertures to record the thermoacoustic signals and
then reconstruct the microwave absorption distribution from
the measured data. The different measurement configuration
may, however, result in a different reconstruction algorithm.
Under certain practical conditions, on a rigorous base, we
theoretically reported a modified backprojection method for
the planar, cylindrical, and spherical recording con-
ﬁgurations.6’7 These were computed through temporal spatial
backprojection and coherent summation over spherical sur-
faces with spatial weighting factors. This method is some-
thing like synthetic aperture. Therefore, the SNR can be
greatly improved through coherent summation, although the
SNR of each detected temporal signal may be reduced due to
the small aperture of the unfocused transducer as compared
to focused transducers with big apertures.

In this paper, we present our study on pulsed-microwave-
induced thermoacoustic tomography in biological tissues un- .
der a circular measurement configuration. A wide beam (~22
cm?) of short-pulse (0.5 us) microwave energy is used to
illuminate a sample from the bottom. The sample absorbs the
microwave energy and generates temporal thermoacoustic
waves simultaneously. An unfocused ultrasonic transducer
with a small aperture (6 mm) is used to record the thermoa-
coustic signals. A filtered backprojection (FBP) method
based on rigorous theory is used to reconstruct the cross-
sectional image from the measured data. Specific details de-
scribing the measurement of thermoacoustic waves and the
implementation of the reconstruction algorithm are dis-
cussed. A phantom sample is investigated. The reconstructed
image agrees with the original sample very well. Through

© 2002 Am. Assoc. Phys. Med. 1661
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FiG. 1. Scheme of thermoacoustic circular measurement. Microwave pulses
are transmitted to the sample from the bottom. The tumor inside absorbs the
energy and generates thermoacoustic waves. An ultrasonic transducer at
position r, records the thermoacoustic signals.

numerical calculation of the point-spread function, the spa-
tial resolution is estimated to reach ~mm.

l. METHOD OF MEASUREMENT

There are three typical measurement geometries: linear or
planar configuration, circular or cylindrical configuration,
and spherical configuration. The choice of measurement ge-
ometry depends on the practical need. For the purposes of
investigating external organs, the second two choices are
preferred. In practice, at least two restraints should be con-
sidered. One is that the space for delivering microwaves to
the sample is physically limited. Ideally, the sample should
be homogeneously illuminated as much as possible. Other-
wise, the thermoacoustic signal will reflect not only the ab-
sorption differentiation, but also inhomogeneous illumina-
tion, which will result in reconstruction artifacts. The other
restraint is that it is physically impossible to collect measure-
ments over a 47 solid angular range. The developed recon-
struction algorithm requires that the detectors receive outgo-
ing thermoacoustic waves from all possible angular
directions.% But, in reality, a limited angular range has to be
tolerated, and the incomplete data also results in some recon-
struction artifacts.

In this study, we chose a circular measurement configura-
tion, as shown in Fig. 1. Tissue, such as breast tissue, is hard
to compress but easy to deform. A slight force can make the
external tissue nearly cylindrical in shape. Then, the micro-
wave can be delivered to the tissue from its larger bottom
and the detector can measure the outgoing thermoacoustic
waves in a circular geometry around the tissue. The wave-
length of microwaves below 3 GHz is relatively long, e.g., at
3 GHz, 10 cm in air, and 3 cm in soft tissue, compared to the
typical size of tissue investigated in several centimeters di-
ameter. That helps to illuminate the tissue homogeneously.
However, because of attenuation, microwaves along the z
axis decay exponentially and the generated thermoacoustic
signal along the z axis decays exponentially, too, even in a

Medica!l Physics, Vol. 29, No. 8, August 2002

FiG. 2. Experimenta! setup.

homogenous sample. But the circular detection plane, i.c.,
the horizontal xy plane, is parallel with the incident plane of
microwave pulses. Besides, due to the bounded water and
salt in cancer cells,* the tumor will absorb more microwave
energy and generate more intense thermoacoustic waves than
the surrounding tissue. Therefore, the thermoacoustic signals
from the circular plane have a significantly reduced dynamic
range compared with those in any other planes. This im-
proves the accuracy of both data acquisition and data recon-
struction tremendously. As shown below, reasonable recon-
struction images are achieved in the experiment.

Figure 2 shows the experimental setup we used for the
circular measurement configuration. A Plexiglas container is
filled with mineral oil. An unfocused transducer is immersed
inside it and fixed on a rotation device. A step motor drives
the rotation device and then moves the transducer scan
around the sample on a horizontal x-y plane, where the
transducer horizontally points to the rotation center. A
sample is immersed inside the container and placed on a
holder: it is made of a thin plastic material, which is trans-
parent to microwaves. The transducer (V323, Panametrics)
has a central frequency of 2.25 MHz and a diameter of 6
mm.

The microwave pulses transmitted from a 3 GHz micro-
wave generator have a pulse energy of 10 mJ and a pulse
width of 0.5 us. A function generator (Protek, B-180) is used
to trigger the microwave generator, control its pulse repeti-
tion frequency, and synchronize the oscilloscope sampling.
In our experiments, the pulse repetition frequency is 50 Hz
and the oscilloscope sampling frequency is 20 MHz. Micro-
wave energy is delivered to the sample by a rectangular
waveguide with a cross section of 72 mmX34 mm. A per-
sonal computer is used to control the steps. The signal from
the transducer is first amplified through a pulse amplifier,
then recorded and averaged 500 times by an oscilloscope
(TDS640A, Tektronix), and finally transferred to a personal
computer for imaging.

This system is within the IEEE standard for safety levels
with respect to human exposure to radio frequency electro-
magnetic fields (see the Appendix). The waveguide is filled
with air and has a mode of TE,,. The wavelength of the
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emitted microwave is 10 cm in air. The microwave irradiates
from the waveguide and then propagates through a thin layer
of air into the container and the tissue sample. Due to the
relatively long wavelength of microwave in tissue (~3 cm at
3 GHz), the diffraction causes only smooth variations on a
scale comparable to 3 cm. As discussed later, in signal pro-

~ cessing, we removed the low-frequency component below 50
KHz, which corresponds to an acoustic wavelength of ~3
cm. Therefore, the effect of mode structure of microwave
irradiation on thermoacoustic imaging is minor.

lll. METHOD OF RECONSTRUCTION

We assume a tissue with inhomogeneous microwave ab-
sorption but a relatively homogeneous acoustic property.
When the microwave pulse duration is <1 us, the heat dif-
fusion’s effect on the thermoacoustic wave in the tissue can
be ignored. The speed of sound in most soft tissue is rela-
tively constant at ~1.5 mm/us. Therefore, the pressure
p(r,t) produced by the heat source H(r,t) obeys the follow-
ing equation:

2y A 0H(r,t)
Vop(r,) = o p(ri)=—I(r) , )

where the Griineisen parameter I'(r)= ,Bc2/ C,, c is the
speed of sound; B is the isobaric volume expansion coeffi-
cient; C,, is the heat capacity; and H(r,?) is the heating func-
tion defined as the thermal energy per unit time and unit
volume deposited by the energy source. Basically, the heat-
ing function can be written as the product of a spatial absorp-
tion function and a temporal illumination function:

H(r,t)=A(D)I(). 2)

Suppose a delta illuminating function &(¢), the detected
acoustic pressure p(ry,t) on the circular surface r=r
=(po,®o»20), and time  can be written as®

=z [ | #rpm et g

47|ry—r]|

where D(r)=A(r)I'(r). The inverse problem is to recon-
struct the spatial distribution D(r) from a set of data p(xy,t)
measured at a different position ry.

Due to the finite bandwidths of the transducer, the pre-
amplifier and the microwave pulse, only a portion of the
information about the absorption structure can be restored.
The high-frequency component of the thermoacoustic signal
primarily reflects the small size structure while the low-
frequency component primarily reflects the large size struc-
ture. If challenged to detect small size tumors, we can safely
remove the low-frequency component. Besides, the wave-
lengths of the high-frequency thermoacoustic waves are
much smaller than the detecting distance between the ther-
moacoustic source and the transducer. Under the above con-
ditions, i.e., pok>1 or k|r—rg|>1, where k is the wave
number, we have shown theoretically that the distribution
D(r) can be calculated by the following 2D surface integral
in the cylindrical configuration:’
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1 lé‘p(ro,t)
D(p,¢,z)=—mjfdso[n' = )
1=|r—rylic
So
“@
where
L. \/I’2+P(2)_2PP0COS(<P0_<P)
ll‘ ro| 11‘“l‘0|2

(Zo -2)

TV ®
dSo=pode, dzy, p and py are the projections of r and ry on
the z plane, respectively, and n and ny are unit vectors point-
ing along the line joining p and py and along the line joining
r and ry, respectively. This is a modified backprojection for-
mula of quantity — (1/£)[ dp(ry,t)/dt]. The weighting factor
[neng] is less than 1, except if z=z;, [m*ng]=1. That indi-
cates that the cross-sectional image of any z, plane is mainly
determined by the data measured on the circle of the same z,
plane. In other words, if some small absorption sources are
located on a z; plane, a set of circular measurement data on
the same plane would be sufficient to yield a good cross-
sectional image.

The quantity dp(ry,t)/dt can be calculated through the
Fourier transform,

0p(r05t) _

pr FFT™ Y —iwp(ry,0)Wq(w)}, (6)

where FFT~! denotes the fast inverse Fourier transform;  is
angular frequency and equal to 27f; Wq(w) is a window
function; and the Fourier transform defines

+o
o(w)= o(t)exp(iwt)dt. @)
We want to point out that the factor w in Eq. (6) actually
represents a pure ramp filter, which will significantly depress
the low-frequency signal. That is helpful to guarantee the
validity of the reconstruction, Eq. (4). The ramp filter can
also amplify the high-frequency noise in such a way that the
reconstructed image is not acceptable from the physical point
of view. In order to avoid this effect, it is necessary to intro-
duce a relative low-pass filter Wqo(w) characterized by a
cutoff angular frequency Q=27fq. A Hanning window is
our choice in this case:

0.5+0.5 cos( 17-‘—0-) , if |o|<Q,
Wo(w)= a ®

0, otherwise.

Thus, the reconstruction algorithm can also be termed a fil-
tered backprojection (FBP) with the modified ramp filter
wWq(w). Unlike the FBP algorithm used in x-ray
tomography,'! which uses surface integration over intersect-
ing planes, the method in our problem is calculated through
temporal backprojection and coherent summation over
spherical surfaces with a certain spatial weighting factor.
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IV. EXPERIMENT 1.2+
The experimental conditions necessitate special care. The 0.8

reconstruction theory requires point detectors, and the real
transducer must never be a point. But, we can ignore its size
if we put it at a distance from the sample that is greater than
the size of the transducer aperture. In addition, we must
shield both the transducer and the electrical transmission
cables from microwave illumination. Otherwise, the micro-
wave pumping will cause harmful electrical signals via elec-
tromagnetic induction. If well shielded, the induced signal
decays very rapidly. A time gate can cut out the induced
signal before the arrival of the thermoacoustic signal. Sup-
pose p(ry,t) is the thermoacoustic signal with delta-pulse
microwave pumping, then the measured thermoacoustic sig-
nal can be written as a convolution with the measurement
system response H(t):

s("o'f)zl’(ro»’)*H(f)- (9)

Considering the temporal response M(r) of the amplifier, the
impulse response R(t) of the transducer and the temporal
profile I(t) of the microwave pulse, H(t) can also be written
as a convolution,

H(1)=M(1)*I1(t)*R(t). (10)
In the frequency domain, Eq. (9) can be written as
S(rg,w)=p(ry,w)H(w). (11)

Basically, we cannot recover all of the available information
because of the limited bandwidth of the detection system.
The information we can acquire depends on the system re-
sponse H(w). In practice, M(w) is very wide and ~1; I(w)
determines the bandwidth of the generated thermoacoustic
signal, which is approximately inversely proportional to the
width of its temporal profile; R(w) is a wide-band transducer
with a central frequency w,.. If H(w) is known, an appro-
priate deconvolution algorithm can be used to figure out
p (r()’w)-

In our experiments, the illumination /(¢) is approximately
a rectangular function with duration 7=0.5 us, and its tem-
poral profile is shown as the short dashed line in Fig. 3(a),
which determines the frequency of the generated thermoa-
coustic signal below 2 MHz. The transducer that we used is
of the videoscan type with a central frequency of f,
=2.25MHz, and its temporal profile is shown as the solid
line in Fig. 3(a). In the frequency range below 2 MHz, the
response of the transducer approximates a ramp filter. As
shown in Fig. 3(b), the calculated H(f) (solid line) was com-
pared with a pure ramp filter f (short dashed line). In this
special case for our measurement system, the filtered
dp(ry,t)/dt can be approximately calculated by an inverse
Fourier transformation as

dp(ro.t) -

—5 ~FFT HS(ry,0)Wo(w)}. (12)

Next, we imaged a phantom sample with a complex ab-
sorption structure using the following procedure. First, we
used screwdrivers to carve a structure: the word “OIL” (ab-
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FiG. 3. (a) The impulse response of the transducer R(s) and the temporal
profile of the microwave pulse /(7); (b) the system response H(f) and the
pure ramp filter f.

breviation for Optical Imaging Lab) in a large fat base. The
diameter of the dent was about 2 mm. In the meantime, we
prepared a hot solution with 5% gelatin, 1% salt, and a drop
of dark ink to improve the photographic properties. Then we
used an injector to inject several drops of the hot solution
into the dents and subsequently blew out the air to assure
good coupling between the gelatin solution and the fat tissue.
The gelatin word was cooled at room temperature until so-
lidified. The photograph of the sample at this stage is shown
in Fig. 4(a). Finally, we added a piece of fat both on the top
and on the bottom of the sample so that the gelatin word was
buried inside the fat tissue. The diagram of the structure in
side view is shown in Fig. 4(b).

The transducer rotationally scanned the sample from 0°—
360° with step size 2.25° in the plane, including the word
“OIL.” The distance between the transducer and the rotation
center was 8 cm. The sampling frequency of the oscilloscope
was 20 MHz. We chose the cutoff frequency f=4 MHz in
the filter W . The filtered temporal thermoacoustic signals
are shown in Fig. 4(c). Because of some time delay in the
oscilloscope, the rotation origin is at time #=36.8 us. Unlike
X-ray tomography,'' these data have no symmetric property
in a 27 period. The reconstructed image produced by our
filtered backprojection method, which agrees with the origi-
nal sample very well, is shown in Fig. 4(d). However, when
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FiG. 4. (a) Cross-sectional photograph of the sample; (b) the diagram of the
measurement in side view; (c) the filtered thermoacoustic temporal signals
detected at different angular positions from 0°-360°; (d) the reconstructed
image with filtering; (e) the reconstructed image without filtering.

the filter W was not used to depress the high-frequency
noise, the reconstructed image displayed certain randomly
distributed spots, as shown in Fig. 4(e), which degrade the
image quality a lot.
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In signal processing, we removed only the low-frequency
component below 50 KHz. As shown in Fig. 4(d), the bound-
ary and location of the large fat base with a 5 cm diameter
was also faithfully imaged. Therefore, we conclude that the
removal of low frequencies in signal processing will not
have much effect on the detection of relatively large struc-
tures. The location and boundary of the microwave absorp-
tion structures are primarily determined by the relatively
high-frequency component of the thermoacoustic signals.

V. NUMERICAL SIMULATION

The full width half-maximum (FWHM) of the point-
spread-function (PSF) profile can be used to represent the
spatial resolution.!? Through numerical simulation, we can
calculate the PSF profiles and then estimate the spatial reso-
lution.

The limit band of the detection system is a primary factor
in limiting the spatial resolution. Consider a point source at
axis X=Xp, which can be written in the circular polar coor-
dinates as

8(p—x,)8(9)8(2)

D(r,)= 5 : (13)

Substituting it into Eq. (3), and taking the Fourier transform,
it is easy to obtain the generated thermoacoustic wave in the
frequency domain,
_ —iw exp(ikd)
(o, @)= —

where d is the distance between the point source and the
detector,

(14)

d= \/p(2,+x12,—2p0xpcos @+ 25 (15)

For simplicity, we only consider a circular measurement in
the plane zo=0. We assume the sampling frequency is 20
MHz and use the Hanning window to simulate the limit band
of the detection system. Figure 5(a) shows three examples of
ramp filters modified by Hanning windows with cutoff fre-
quencies at 4, 2, and 1 MHz, respectively. We use Eq. (6) to
calculate derivatives of the temporal thermoacoustic signals.
Finally, the FBP, Eq. (4), is employed to reconstruct images
from the simulated data. '

The numerical calculations demonstrate that the PSF is
radially symmetric only when the point source is located at
the origin. Such examples of PSF radial profiles with differ-
ent cutoff frequencies are shown in Fig. 5(b). When a point
source is off center, the PSF is not radially symmetric. Figure
5(c) shows some examples of PSF radial profiles when the
point source is at x,=30 mm. The farther the point is off the
origin, the more distortion the PSF has. But the distortion is
not significant and the PSF does not expand in either the
lateral or axial direction by very much. Therefore, the PSF
and FWHM can be regarded as nearly space invariant. Of
course, if the detector system has a lower cutoff frequency,
the width of the PSF profile has more extension and the
spatial resolution becomes lower. Only a wide band signal at
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FiG. 5. (a) The pure ramp filter f (dashed line) and the modified filters by Hanning windows with different cutoff frequencies: 4 MHz (solid line), 2 MHz (short
dash dotted line) and 1 MHz (short dashed line); Examples of PSF radial profiles with Hanning windows at cutoff frequencies: 4 MHz (solid line), 2 MHz
(short dash dotted line) and 1 MHz (short dashed line), when the point source at (b) the origin and (c) the axis x=30 mm: (d) examples of PSF profiles in
lateral view with different detector aperture size =1 mm (solid line), 3 mm (short dash dotted line), and 6 mm (short dashed line), respectively; (e) an

example of a comparison with R,, R,, and R, where =1 mm.

a sufficiently high frequency can restore good spatial resolu-
tion and accurate position orientation. Actually, the distortion
of the PSF results from the approximation of the FBP algo-
rithm.

For the PSF profiles in Fig. 5(b), the FWHM were mea-
sured to be 0.4, 0.9, and 1.5 mm for the cutoff frequencies 4,
2, and 1 MHz, respectively. These values are equivalent to
the corresponding half-wavelengths of the central or domi-
native frequencies of the modified ramp filters: 1.7, 0.8, and
0.4 MHz, respectively. Therefore, the spatial resolution re-
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sulting from the bandwidth of the detection system can be
estimated by

where X is the wavelength of the central or dominative high
frequency of the detection system.

In addition to the limitations resulting from the bandwidth
of the detection system, the size of the detector aperture is
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another factor, which limits spatial resolution. We also chose
to investigate its effect through numerical simulation. The
received signal in the detector can be simulated by a surface
integral divided by its aperture. Then the PSF can be calcu-
lated through the FBP, Eq. (4). We assume that the detector
has a flat surface with diameter &.

The simulation demonstrates that the PSF gradually ex-
tends along the lateral side but changes very little along the
axial direction. Figure 5(d) shows examples of lateral pro-
files for =1, 3, and 6 mm, respectively, where the point
source at x,=30mm and fo=4 MHz. It is expected that a
big detector aperture will greatly blur the lateral resolution.
For convenience, this kind of spatial resolution can be
termed R,, which can be estimated by

r
R~ 7o d, a7
where r is the radius of the measurement geometry and r is
the distance of the point source and the origin. Figure 5(¢)
shows an example of a comparison with R,, R,, and the
lateral resolution R, where d=1 mm; ro=80mm and fq
=4 MHz. Near the origin, R,<R,, the lateral resolution R
is still dominated by R,. Beyond that where R,>R,, the
lateral resolution R is greatly degraded by the aperture size &
and finally equals R, . The result also indicates that either a
large detector radius ry or a small detector aperture & can
improve the lateral resolution in the central region of the
detection system. But R,,, i.e., the band limit of the détection

system, determines the highest resolution we can obtain.
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Let us review the experiment in the previous section. The
detector aperture has a 6 mm diameter, and the image region
is 30 mm in diameter. Therefore, the worst spatial resolution
at r=30mm still has ~2 mm. The dominative high fre-
quency of the detection system is about 1.6 MHz, as shown
in Fig. 3(b). Thus, the highest resolution is about 0.5 mm.
That explains why the word “OIL” in 2 mm diameter can be
clearly imaged.

Next, we conduct some numerical experiments. We con-
sider a set of uniform spherical absorbers surrounded by a
nonabsorbing background medium. For convenience, we use
the centers of the absorbers to denote their positions. We also
assume that the pulse duration is very short and can be re-
garded as a delta function, and, consequently, that the ther-
moacoustic signal received by the transducer can be calcu-
lated by Eq. (3). We employ the circular measurement
configuration, as shown in Fig. 1(a). Suppose the circular
ultrasonic array consists of 160 elements. The detection ra-
dius is 80 mm. There are six spherical absorbers in the z
=0 plane: a pair of tiny absorbers in diameter 0.75 mm at
the positive x axis, a pair of small absorbers in diameter 1.5
mm at the negative y axis, a moderate absorber in diameter 3
mm at the negative x axis, and a big absorber in diameter 6
mm at the positive y axis. Equation (6) is used to compute
the filtered thermoacoustic signals with Hanning windows.
Figure 6 shows the reconstructed images with different cut-
off frequencies: (a) 4 MHz, (b) 2 MHz, (c) 1 MHz, and (d)
0.5 MHz, respectively. As expected, all of the absorbers are
clearly imaged, as shown in Fig. 6(a), when the frequency
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band is sufficiently wide. However, in the absence of a high-
frequency signal, the small size structure is lost. For ex-
ample, if the cutoff frequency is 1 MHz, the tiny absorbers
disappear. For the even lower cutoff frequency of 0.5 MHz,
not only do the small absorbers disappear, but also the origi-
nally sharp borders of the big absorbers are greatly degraded.

The above numerical simulations gives us clear directions
for designing a good image system with ~mm spatial reso-
lution. The duration of the microwave pulse should be less
than 1 us, which allows a thermoacoustic signal up to
~MHz frequency to be generated. The measurement detec-
tors and the preamplifier should have sufficiently wide
bands, and the central frequency of the detection system
should reach 1-2 MHz. The transducer with a small aper-
ture, such as 1 mm in diameter, is preferred. The small ap-
erture will have less effect on the lateral resolution, and it
will reduce the SNR as well. Alternatively, a big detection
radius 10-15 cm can be adopted with the sacrifice of signal
amplitude because of the acoustic wave propagation attenu-
ation. A wide microwave frequency range from 300 MHz to
3 GHz can be used as the irradiation source. A lower-
frequency microwave might be better to image relatively
large size samples because it can penetrate deeper.

Finally, we must point out that incomplete measurement
data will result in reconstruction artifacts and will degrade
the spatial resolution. This topic will be addressed more
completely in future work.

V1. CONCLUSION

We have presented our study on pulsed-microwave-
induced thermoacoustic tomography in biological tissues by
a circular measurement configuration. A filtered backprojec-
tion algorithm is used to reconstruct the cross-sectional im-
ages. The reconstructed image of a phantom sample agrees
with the original values very well. Through numerical simu-
lation, the point-spread function is calculated to estimate the
spatial resolution. The results demonstrate that the circular
measurement configuration combined with the filtered back-
projection method is a promising technique for using micro-
wave absorption contrast and ultrasound spatial resolution
(~mm) to detect small tumors buried in biological tissues.

ACKNOWLEDGMENTS

This project was sponsored in part by the U.S. Army
Medical Research and Material Command Grant No.
DAMD17-00-1-0455, the National Institutes of Health Grant
No. RO1 CA71980, the National Science Foundation Grant
No. BES-9734491, and Texas Higher Education Coordinat-
ing Board Grant No. ARP 000512-0123-1999.

APPENDIX

According to the IEEE standard for safety levels with
respect to human exposure to radio frequency electromag-
netic fields 3 KHz to 300 GHz (IEEE Std C95.1, 1999 edi-
tion), the peak power of maximum permissible exposure
(Peak MPE) for a controlled environment in the frequency
range f (300-3000 MHz) can be computed by
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Peak MPE= 024 ——f
¢ N Pulse width

(mW/cm?),

where N is the pulse number per second (N>5) and the
pulse width (<100 ms) is in seconds. In other words, the
permissible pulse energy with illumination area S (cm?) can
be estimated by

Pulse Energy=Peak MPEXPulse widthX$
0.245f

N

In our system, N=50, pulse width=0.5 ms, and the area
of the waveguide S=7.2X3.4cm?~22cm?. Therefore, the
permissible pulse energy=0.24X22X3000/50~300 mJ. But
the pulse energy that we used is only 10 mJ, which is much
less than the above permissible value.

Actually, the pulse width is so short that only tiny energy
is delivered to the sample. The microwave is not focused and
the illumination area is so big that the energy density in the
tissue is very low. Suppose the penetration depth of micro-
wave is 1 cm, the energy density E, due to a pulse micro-
wave excitation can be estimated by

E,=Pulse energy/(Illumination area $X1 cm)
=10 mJ/22 em*~0.45 ml/cm?,

Then, we can estimate the pressure and temperature rise ex-
cited by a pulse microwave in tissue. The muscle contains
about 75% water. We take it as an example. In muscle, the
volume expansion coefficient is B~3.8X 104 K™!, the heat
capacnty is C,~3.7mJ/(g mK), and the mass densnty is p~1
g/em’, Therefore the Griineisen parameter= Bczlc =~(0.23,
and the generated pressure rise,

p=0.23X045 mJ/cm*~0.1 ml/cm®=1 mbar,
and the temperature rise,
8T=E,/(C,p)=0.45/3.7~0.1 mK.

As discussed in the paper, the penetration depth in tissue for
a microwave below 3 GHz is several centimeters. The Griin-
eisen parameter in other soft tissue should be close to the
value 0.23 in muscle. Therefore, we can conclude that a mi-
crowave pulse only causes pressure rise with several milli-
bars and temperature rise with millidegrees. Such tiny values
are far beyond causing tissue damage.
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ABSTRACT

The effects of wavefront distortions induced by acoustic heterogeneities in breast thermoacoustic tomography (TAT) are
studied. First, amplitude distortions are shown to be insignificant for different scales of acoustic heterogeneities. Next,
the effects of phase distortions (errors in time-of-flight) in our numerical studies are investigated, and the spreads of
point sources and boundaries caused by the phase distortions are studied. After that, a demonstration showing that the
blurring of images can be compensated for by using the distribution of acoustic velocity in the tissues in the
reconstructions is presented. Last, the differences in the effects of acoustic heterogeneity and the generation of speckles
in breast TAT and breast ultrasound imaging are discussed.

Keywords: thermoacoustic tomography, acoustic heterogeneity, wavefront distortion.

1. INTRODUCTION

When an electromagnetic pulse is absorbed by biological tissue, the heating and subsequent expansion causes the
emission of acoustic signals. This phenomenon is called the thermoacoustic effect. In thermoacoustic tomography
(TAT), the thermoacoustic signals from a tissue sample are collected to map the distribution of the radiation absorption
within the sample. Radiation absorption is closely related to the physiological and pathological status of the tissue. For
example, the microwave absorption rate of cancerous breast tissue is 2-5 times greater than that of the surrounding
normal breast tissue. This difference has been attributed to an increase in the amount of bound water and sodium within
malignant cells.'™ TAT combines good imaging resolution with high imaging contrast. There are a variety of
reconstruction algorithms for TAT.*” An important assumption in these reconstruction algorithms is that the tissue is
acoustically homogeneous. For many medical imaging applications, including imaging of the female breast, this
assumption is an approximation. For example, the speed of sound in the breast can vary from 1400 m/s to 1550 m/s.
Errors due to the assumption of a constant acoustic speed, which has never been studied in TAT, can potentially have a
proriounced effect on image quality. In breast ultrasound tomography (UT), however, wavefront distortion has been
studied extensivelylo'”. Amplitude distortion caused by refraction dominates the phase distortion induced by acoustic
speed variation in the breast UT'". Refraction occurs where there is a speed mismatch across a tissue interface. Because
of refraction, rays from a single source can reach the same receiver by different paths, as shown in Fig. 1. The
interference between these rays causes strong amplitude distortion in breast UT. Different deaberration methods have
been proposed to compensate for phase distortion in UT.'*!* However, they have so far been inadequate to correct the
strong amplitude distortion caused by refraction. 16

The effects of acoustic heterogeneity on breast TAT are estimated to be weaker than those in breast UT for the
following reasons. First, the signals in breast TAT are primarily in a lower frequency range (usually below 1.5 MHz 17
than those in UT. Ultrasound scattering in this frequency range is weak. Secondly, in TAT, the acoustic source is
induced by electromagnetic absorption; therefore, only one-way distortion on reception wave propagation occurs. As
shown in Fig. 2, an acoustic ray, for example SB;D, needs to pass through interface  only once. In contrast, in pure
ultrasound imaging, either in the pulse-echo mode or in the transmission mode, ultrasound distortion includes two parts--
distortion during transmission and during reception wave propagation. Therefore, the acoustic wave has to pass through
the interface at least twice, as shown in SB,B;D in Fig. 1. Third, if the detection distance from the objects are properly
chosen, the effects of amplitude distortion can be minimized in breast TAT, as will be explained in Section 3.




Mineral oil

Fig. 1 Illustration of the multipath interference caused by Fig. 2 Hlustration of a ray refraction at the parenchyma
refraction at boundary points B, and B; in breast ultrasound wall with breast TAT.

imaging in transmission mode. § is a point source and D is

a detector.

In our work, we analyze the effects of amplitude distortion and numerically simulate the effects of phase distortion
with the truncated conjugate gradient '* (TCG) method. In Section 2, we derive equations for the forward problem in an
acoustically homogeneous model, which yields acoustic pressure from a known distribution of microwave absorption. In
Section 3, we investigate the effects of refraction on wavefront amplitude and phase in breast TAT. The inversion
algorithm of TCG, and the model and parameters used in the numerical simulations, are presented in Section 4. In
Section 5, the effects of phase distortion are studied numerically.

2. THE FORWARD PROBLEM IN A HOMOGENEOUS MODEL

We begin by deriving a formula for the forward problem for an acoustically homogeneous model, and then modify it, at
the end of Section 3, to consider velocity heterogeneity. In the case of thermal confinement, the acoustic wave at point I

and time #, p,(r,?) can be expressed as follows'®:

r, t) = szﬂIO __a_ q’(r') dl",
4nC or, r-rf

p( m

=t; (r'r)
where

t,@,r)=-r/v, @)
is the time-of-flight (TOF) from rtor Vo is the acoustic speed; C is the specific heat; ﬂ is the coefficient of the
volume thermal expansion; I, is a scaling factor proportional to the incident radiation intensity; and q)(r') describes

the to-be-reconstructed microwave absorption properties of the medium at r’. The physical meaning of this equation is
that, in an acoustically homogenous medium, the pressure D, at a spatial point I' and time ¢, is proportional to the first-
order temporal derivative of the integration of the absorbed microwave energy over a spherical surface [a circle in the
two-dimensional (2-D) case]. The spherical surface is centered at I and has a radius of .




3. THE EFFECT OF ACOUSTIC HETEROGENEITY IN TAT

A TAT model is shown in Fig. 2. In our imaging system, mineral oil is chosen as the coupling medium for both
microwaves and ultrasonic waves. The acoustic speed of light in mineral oil is 1437 m/s 2 which is very close to that in
fat. 2 Therefore, there should be negligible refraction at the boundary between the breast and the mineral oil, and,
consequently, we will consider only the effects of acoustical heterogeneity within the breast. More details on our TAT
experimental setup can be found in our previous work®,

3.1 Amplitude distortion caused by refraction

Fig. 1 shows the multipath interference in breast ultrasound imaging in transmission mode. The acoustic ray from source
S can travel to detector D by two different paths, SD and SB,B;D, due to refraction at the interfaces between different
tissues. The interference between the two rays can cause amplitude distortion, '' but it is not severe in breast TAT".
Basically, the phenomenon can be explained as follows. For wavelength-scale or smaller heterogeneities, amplitude
distortion of the wavefronts is minor due to diffraction when the detectors are placed in the far field of the irregular
boundary segment. When the size of the concave segment is larger, or the boundary segment is convex, according to the
imaging formula of concave boundaries, only imaginary images exist after the wavefronts from real objects pass through
the concave boundary. Equivalently, no two rays from a point source will intersect with each other after passing through
the concave boundary segment and no strong amplitude distortion occurs. '

3.2 Phase distortion caused by refraction and speed variation

If the background is acoustically homogeneous, an acoustic ray from source § in Fig. 2 goes along the straight line SD to
reach detector D. When there is acoustic heterogeneity, an acoustic ray goes along line SB;D because of refraction at the
interface. Assume there is no change in the shape of the acoustic pulse caused by acoustic heterogeneity. The TOF from
source S to detector D in the acoustically heterogeneous model is

tsop = LB‘D di/v,(x"), ®)

where Vv, (l") is the local acoustic speed, and r’isa point within line SB;D. Now, we will show that £ sgp can be

approximated to the second order of a small value £ = (v, (r")—v, )/ v, by tsp = LD dl/v, (r"), where v, is

the velocity used in the acoustically homogeneous model. According to Fermat’s principle, an acoustic ray travels on the
fastest path. In another words, SB,D is a local minimum of TOF. Now assume B is displaced to B ’ by a small distance

q=|BB],

7‘1— =o(€). 4)
sD
After expanding Zp;, around g ;, with respect to ¢, we have
O gyp 2
tsgp =lsgp +9q +o(€7). )
q=0
ot SB{D

Recalling that SB;D is a local minimum, we have = (. Substituting it into Eq. (5) and assuming

dq

q=0

Iys /lsp = 0(€), due to the weak acoustic heterogeneity in breast tissue, we have

t = [ dlIV, (") =15y, +0(E?). | ©)




The above result can be understood in the following way. Although the path length of SB,D in Fig. 2 is longer than that
of SDand (Igy +1pp —1g,)/ g, = 0(€), path SD has a longer part within the slow-speed area than path SB,D. The
combination of the two opposite effects leads to the cancellation of the first-order term of € in Eq. (6).

Next we will show that the approximation of ¢ ssp bY Isp includes most of the flight-time variation induced

by acoustic heterogeneity. The TOF from source S to detector D in an acoustically homogeneous and heterogeneous
model is [, / V,, and ¢ s8,D » Tespectively. The difference between them is

— = = 2 ~
& = Is8.p AN Itsa,b 2 Pl A B lo(£ Y+t =g /v, = 0(€), ™
where we used Eq. (6). Combining &¥ with Eq. (6), we have
te, —1
sp ~ *sBD —o(e). ®)

o

Therefore, the error in the approximation of Issp by tsp is not important. At last, it should be pointed out that our
analysis of TOF can be applied to both 2-D and 3-D TAT.

3.3 Forward formula in an acoustically heterogeneous model

In our analysis of TOF, we consider only a single interface. The results can be extended to the case involving several
interfaces. In general, the TOF from r to I’ can be expressed as

R » 2
t,(r',r) = Lr,‘r)dl/vs(r )+0(e?), ©)

where L(r’,r) is the straight line from r’to ', and r” lies within the line L. Combining Eq. (9) and Eq. (1), we obtain
the forward formula for acoustically heterogeneous TAT.

Our analysis of TOF is in agreement with the results from a more rigid model 2'. It has been reported that the
variation in travel time caused directly by acoustic speed heterogeneity is a first-order perturbation and that the effect of
ray bending on travel time is a second-order one. For breast tissue, which is weakly acoustically heterogeneous, it is
enough to consider the first-order perturbation by computing the integral of the slowness perturbation along straight
lines, as shown in Eq. (9).

4. IMPLEMENTATION AND MODELING OF NUMERICAL SIMULATIONS

Fig. 3 (a) and (b) illustrate the acoustic and RF absorption models of the breast, respectively. The acoustic model of the
breast in our simulations is based on experimental results of the distribution of acoustic speed in the breast 22, The

mean velocity in the subcutaneous zone v  and the breast parenchyma v , are set to be 1437 m/s 2 and 1546 mys,

respectively. A random component, which is a normal distribution with a mean of zero and a variance of 33 m’s, is
added to the velocity distribution to simulate the velocity fluctuations in the subcutaneous zone?? and the breast
parenchyma. The speed distribution in Fig. 3 was normalized to 1437 m/s. The RF absorption mode! of the breast is
shown in Fig. 3(b). The RF absorption coefficients in the fat, tumors, and coupling oil are set to be 0.1, 3, and 0 after
being normalized to that in the parenchyma. The tumors, shown in 3(b) as dark spots, are placed evenly along the
horizontal direction to study the dependence of the distortions in the images based on the tumor locations. We set the
radii of the four tumors to about 1.2 mm to simulate approximately the point-source spread caused by acoustic
heterogeneity.

The parameters in our simulations are chosen as follows unless stated otherwise. Noise is added to the
generated signals so that the frequency range with a signal-to-noise ratio (SNR) larger than unity is from 0 to 1.5 MHz,
which approximates our experimental results'’. The radius of the circle of detection is set to be 125 mm; the angle range
of detection is 27 with 200 steps. An insufficient number of scanning steps can cause radial aliases in the reconstructed

image®. Thermoacoustic signals are sampled for 108 ps at a sampling rate of about 7 MHz, which is sufficient to meet
the Nyquist criteria. The 100 mm by 100 mm imaging field is mapped with a 128 by 128 mesh. In our simulations, the



thermoacoustic signals are generated in an acoustically inhomogeneous model, while the reconstruction is implemented
for two cases--with and without the consideration of acoustic heterogeneity.

20 mm

0.89 0.97 1.05 113 1.2 0 0.775 155 233 3.1
Acoustic velocity Energy deposition

Fig. 3(a) Distribution of acoustic velocity normalized to v, for a breast model. The breast surface is represented by the

outer circle; the wall between the breast parenchyma and the subcutaneous fat is represented by the inner irregular
boundary. (b) The microwave absorption distribution in our model. The four small spots represent the assumed tumors.

5. NUMERICAL RESULTS

We first study the effect of acoustic heterogeneity on imaging when acoustic heterogeneity is considered in the forward
problem but not in the reconstruction. In the reconstruction, v, (r)in Eq. (9) is set to be v ,. We then show how to
improve image resolution after considering acoustic heterogeneity in the reconstructions. Lastly, the effects of
measurement errors in V., v, and X on the improvement are investigated.

c d
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Fig. 4 (a)-(d) Images when acoustic heterogeneity is not considered in the reconstructions. The mean radii of the
parenchyma wall are set to be 0.8, 0.6, 0.4 and 0.2 of the breast radius, respectively. The point-spread width and the
boundary-spread width increase linearly with the size of the parenchyma tissue. Note that the spread of points outside the
parenchyma tissue is much smaller than the spread inside.




5.1 Reconstruction without considering heterogeneity

Fig. 4(a)-(d) shows the results when acoustic heterogeneity is not considered in the reconstructions. In the four
simulations, the mean radii of the parenchyma wall r, are set to be 0.8, 0.6, 0.4 and 0.2 of the breast radius. The wall is

distorted randomly in the simulations, and the distortion amplitude is 0.1. We measure the point-spread width (PSW),
which is the width of the image of a point source along a specific direction minus its real size, 2.4 mm, and the boundary
spread width (BSW), which is the width of the blurred parenchyma wall X in an image. It is clear from Fig. 4 that PSW
and BSW increase with the radius of the parenchyma wall. It is found that the two widths can be estimated by the
following equation:

w=la, (10)
where / p I8 2rp in the case of BSW; in the case of PSW, / p 1s the length of a ray within the parenchyma tissue along a

specific direction. The PSW is anisotropic because / p» depends on direction. This anisotropy of PSW can be verified by

the observation that the three tumors within the parenchyma tissue in Fig. 4(a) and (b) have the same spread along the
horizontal direction, while their spreads along the vertical direction decrease when the tumors are located away from the
center.

Another interesting point in Fig. 4 is that the PSW of the objects outside the parenchyma tissue are little
affected by acoustic heterogeneity. Only minor artifacts are observed near them. This is because in TAT, a7 - or wider
view can provide complete data for reconstruction®. In this case, a view means the angle subtended by the detection
curve when observed from the to-be-imaged object. If an object is outside the parenchyma tissue, it has at least a 7 -
view detection range in which the medium between the object and the detectors is acoustically homogeneous. Therefore,
a perfect image can be reconstructed from this part of the data. On the other hand, the image reconstructed from the part
of the signals that experience the heterogeneous medium is weak in amplitude because the flight-time errors compromise
the build-up strength of the signals.

In addition to the blurring of the images, acoustic heterogeneity increases the background noise level and
decreases the values of the reconstructed tumors, which consequently reduces the contrast of the tumors in the images
and the detectability of small tumors. A comprehensive quantitative study of this issue will depend on the SNR of the
hardware of the imaging system, the parameters of the imaging system and the reconstruction algorithms, and the
contrast of the to-be-imaged objects. Meaningful conclusions should be made based on relevant experimental data which
we leave for a future study.

5.2 Reconstruction with the consideration of heterogeneity

Fig. 5 and Fig. 6 show the reconstructed images with consideration of heterogeneity and the corresponding close-up
images around the central tumor in Fig. 5. The exact distribution of acoustic velocity is included in the model in Fig.
S(a). Although the result is good, it is not practical, because it is not feasible to obtain the exact distribution of velocity in

the breast with current technology. A much more practical situation is when the mean velocities, v s Vo and boundary

profile X are approximately known while the velocity fluctuation within each area is unknown. Here, we will show the
effectiveness of our compensation method. Fig. § (b)(f) shows the images reconstructed from the same data as in Fig. §

(a), but the reconstruction algorithm used only v s» Vp and Z to study the effects of the measurement errors in v Yy
and X on the improvement. In Fig. § (b)~(f), the random component of the acoustic-velocity distribution is ignored. In
addition, v p is decreased by 1% and 3% in Fig. 5 (c) and (d), respectively; X is scaled down by 10% in Fig. 5 (¢), and a
20% random error is introduced to X in Fig. 5 (f). Fig. 6(a)-(f) are the corresponding close-up images around the central
tumor in Fig. §. 7, in these simulations is 0.6 of the breast radius, and the distortion amplitude of the parenchyma wall
is 0.2.
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Fig. 5. (a) Compensation for the degradation in images when complete acoustic heterogeneity information is included in
the reconstructions. (b) Only exact v, V., and X are included to show the insensitivity of improvement to a random

component of the acoustic-velocity distribution. (c) and (d) Images when there are 1% and 3% errors in V,,

respectively. (¢) Images when X is scaled down by 10%. (f) Images when 20% random error is introduced in X . The
above results show the stability of the improvement to the errors in v b Vo and X.

5.2.1 Effect of errors in velocities

There is little difference between the resolution of the reconstructed images when we consider [Fig. 6 (a)] and do not
consider [Fig. 6 (b)], the random component of velocity distribution, although the artifacts in the background in Fig. 6
(b) are a little stronger than those in Fig. 6 (a).

Comparing Fig. 6 (c)—~(d) with Fig. 6 (b), it should be noted that a 1% error in v, does not degrade the imaging
quality much, while a 3% error in v, greatly deteriorates the imaging resolution and contrast. This is because in our
mbdel, the difference between v ’ and v » is about 7% of their speeds, and a 3% error in V » actually accounts for 42%

of the difference between v, and v, . Therefore, we conclude that an accuracy of 1% in the determination of v, is

sufficient for significant improvement in imaging resolution.
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Fig. 6(a)«(f) Close-up images around the centra! tumor in Fig. 5 (a)-(f), respectively.
5.2.2 Effects of errors in determining £

In the model in Fig. 6 (¢), the boundary X is scaled down by 10%. In Fig. 6 (f), a random component is added to the real
boundary, which is implemented by multiplying the real radii of a boundary with uniform random numbers within
[0.8,1.2). After comparing Fig. 6 (¢) and (f) with other figures in Fig. 6, it is found that compensation is less sensitive to

error in determining X as v b This is because a 10% error, which is about 6 mm in the diameter of the parenchyma wall,
adds at most 0.42 mm to the PSW and BSW according to Eq. (10).

6. DISCUSSION

The studies we presented in Section 3 show that there should be no severe amplitude distortion in breast TAT although
severe amplitude distortion caused by refraction has been observed in both narrowband and broadband breast UT'". The
difference between the effects of acoustic heterogeneity on TAT and UT can be explained by the different central
frequencies. In UT, the central frequency is above 3 MHz, while in TAT, the central frequency is below 1 MHz. The
higher frequency in UT results in stronger wavefront distortion for the following reasons. First, the scattering effect
increases rapidly with frequency; and secondly, the minimum detection distance for avoiding strong amplitude distortion
caused by an acoustic lens, which can be a boundary segment or a small inclusion, extends farther with increasin
frequency. We notice that the transducer or array was placed closer than the required distance to the breast'" '%,
Therefore, it is not surprising to observe the strong interference effect in UT.

Another important difference between TAT and UT is that there is no speckle in our TAT images’. Speckle is
an important factor limiting the quality of pure ultrasonic imaging. In our technology, the detected signals are primary
acoustic waves, rather than reflective or scattered waves as in UT. Further, the temporal frequency of the acoustic signals
lies in a range from 0 to 1.5 MHz, which is only weakly scattered in the tissues. However, the issue of image speckle in
more realistic medical imaging applications is a topic for future consideration.
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7. CONCLUSIONS

The effects of acoustic heterogeneity on TAT in the breast are studied. Our analysis shows that the amplitude distortion
in breast TAT is minor. The amplitude distortion is not severe in breast TAT, because the TAT signals are broadband,
have low central frequency, and experience only one-way transmission through the parenchyma wall. Therefore, we
consider only phase distortion in our numerical studies. The numerical results on the spread of point sources and
boundaries caused by the phase distortion are in good agreement with the predictions of the proposed formula. It is
shown that phase distortion can be compensated for when complete or partial information on the distribution of acoustic
velocity in the breast is included in the reconstruction. It is discovered that improvement in the results is more sensitive

to measurement error in v s Vp than in ¥ . The differences between breast TAT and breast ultrasound imaging in

relation to the effects of acoustic heterogeneity and speckles are accounted for by differences between them in their
central ultrasound frequencies and detection configurations.
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A modified back-projection approach deduced from an exact reconstruction solution was applied to
our photoacoustic tomography of the optical absorption in biological tissues. Pulses from a Ti:sap-
phire laser (4.7 ns FWHM at 789.2 nm) were employed to generate a distribution of photoacoustic
sources in a sample. The sources were detected by a wide-band nonfocused ultrasonic transducer at
different positions around the imaging cross section perpendicular to the axis of the laser irradia-
tion. Reconstructed images of phantoms made from chicken breast tissue agreed well with the
structures of the samples. The resolution in the imaging cross section was experimentally demon-
strated to be better than 60 um when a 10 MHz transducer (140% bandwidth at —60 dB) was
employed, which was nearly diffraction limited by the detectable photoacoustic waves of the

highest frequency. © 2002 American Association of Physicists in Medicine.
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I. INTRODUCTION

Recently, there has been considerable interest in photoacous-
tic tomography, a nonionizing imaging modality based upon
differential absorption of electromagnetic waves for different
tissue types. It is well known that some tissues, such as ma-
lignant tumors, melanin-pigmented lesions, and blood ves-
sels have obviously higher absorption rates compared with
surrounding tissues. For example, the absorption contrast be-
tween breast tumors and normal breast tissues can be as high
as 300% for 1064 nm light;! the absorption contrast between
the blood and the surrounding medium is around 1000% for
850 nm light.2 The thermal expansion of an absorption struc-
ture in tissue creates acoustic waves according to the ther-
moelastic mechanism, which can be detected by high sensi-
tive piezoelectric devices outside the sample. Photoacoustic
tomography visualizes the high optical contrast between dif-
ferent soft biological tissues instead of the low acoustic con-
trast while retaining the satisfactory spatial resolution of pure
ultrasound imaging.

The photoacoustic method to detect small deeply embed-
ded tumors has been studied by Esenaliev et al® and Orae-
vsky et al.*! In an attempt to advance the in vivo detection of
skin cancer, photoacoustic imaging of layered tissues with
optical contrast has been studied by Beenen et al. .° Oraevsky
et al..’ and Karabutov et al.” Axial resolution up to 10-20
um has been achieved. Hoelen et al. applied photoacoustic
tomography to the detection of blood concentrations.> The
depth resolution of blood vessel imaging in highly scattering
media is about 10 um. Paltauf ef al. adopted an optical
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method instead of piezoelectric devices for two-dimensional
(2D) ultrasonic detection and achieved a spatial resolution
around 10 ,u.m.8

All of the above photoacoustic tomography systems can
be categorized into two detection modes: (1) the forward
mode, with the laser irradiation and ultrasound detection on
opposite surfaces of the sample, and (2) the backward mode,
with the laser irradiation and ultrasound detection on the
same surface of the sample. Although high resolution along
the axis of the laser irradiation can be easily achieved, the
basic problem with these two modes is the poor lateral reso-
lution, which is limited mainly by the scanning range of the
detector.

‘When lateral resolution is the concern or the imaging pur-
pose is to obtain a 2D image of a cross section of the sample
perpendicular to the axis of the laser irradiation, a proper
scheme is to arrange the receiver around the laser axis to
detect the acoustic signals from the side of the sample. A
focused ultrasonic transducer can be adopted to perform the
linear, or sector, scan, and then the measured data is used to
construct an image directly,” which is similar to the method
used in early pulse-echo ultrasonography. An alternative
method is to use a wide-band point detector to receive the
acoustic signals and then reconstruct the absorption distribu-
tion based on a certain algorithm.“)’11

On the other hand, when employing the nonfocused ultra-
sonic transducer for detection, the quality of the photoacous-
tic imaging is highly dependent on the reconstruction algo-
rithm. Examples of approximate reconstruction algorithms

© 2002 Am. Assoc. Phys. IVied. 2799
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include the weighted delay-and-sum method,'? the optimal
statistical approach,'® and the Radon transform in far-field
approximation.'®'4!3 Exact reconstruction algorithms were
recently derived for various detection geometries.'6~"?

In this paper, a modified back-projection method based on
the circular-scan geometry was applied to the photoacoustic
tomography of optical absorption in biological tissues. The
modified back-projection algorithm was deduced from an ex-
act reconstruction solution in the time domain, which will be
briefly introduced in the second section. In the third section,
the experimental method, as well as the imaging results in
tissue phantoms, will be shown. In the fourth section, the
best resolution in the cross section of our photoacoustic to-
mography system will be demonstrated by experimental re-
sults. The final section will present our conclusions.

Il. MODIFIED BACK-PROJECTION

We are interested in tissues with inhomogeneous optical
absorption but relatively homogeneous acoustic properties.
When the laser pulse is very short, which is the case in our
experiments, the time required for thermal diffusion is much
greater than the time for the thermoacoustic transition. Con-
sequently, the effect of heat conduction in the thermoacoustic
wave equations can be ignored. As has been described pre-
viously in the literatures,”®?! the generation of a photoacous-
tic wave by deposition of light energy can be expressed as

#p(r,1) _ vZB oH(r,1)
at? - C a

p
where v; is the acoustic speed; C, is the specific heat; B is
the thermal coefficient of volume expansion; and H(r,?) is
the heat-producing radiation deposited in the tissue per unit
volume per unit time, which can be expressed as

H(r,t)=o(r)5(1), (2

where @(r) describes the optical energy deposition (also
called optical absorption) within the tissue at position r; 7(r)
describes the shape of the irradiation pulse, which can be
further expressed as x(f)=4&(¢) for delta-function laser
pulses.

The object of the image reconstruction is to estimate the
distribution of the optical absorption ¢(r) of the tissue from
a set of measured acoustic signals p(r,r). For a circular
scanning configuration, the exact inverse solution can be de-
rived based on the spherical harmonic function,

v DR
r=———m— das dk p(ry .k
#= o) | 45| dkptrok
So

o (2m+1)j,(kr)
><m§=:0 Wro)—?m(n'no), 3)

~v2V2p(r,1)

M

where A=B8/C,; n=rx/r; ny=ry/ry; 1y is the detector po-
sition in respect to the imaging center; k= w/v, is the wave
number; p(rg,k) is the Fourier transform of the pressure
function p(ro,t); Sy is the measurement surface including
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the object under investigation; j,(-) and hf”(-) are the
spherical Bessel and Hankel functions, respectively; and
P /() represents the Legendre polynomial. The detailed deri-
vation of this exact inverse solution can be found elsewhere.
This inverse solution involves a summation of a series
that is computationally time consuming. Therefore, it is de-
sirable to simplify the solution. In the experiments, the de-
tection radius rq is much larger than the wavelengths of the
photoacoustic waves that are used for imaging. Therefore,
we can assume |k|ry>1 and use the asymptotic form of the
Hankel function to simplify the above exact inverse solution
Eq. (3). The approximate inverse solution has the form of

@)

1 1 dp(ry,t

o(r)=-— fdeoT-”(a—fZ :

211’115)\ % f=|"o"|",
Actually, two compensation factors are implicit in this solu-
tion. Firstly, we introduce a weighting factor *“t,”” which
compensates for the 1/t attenuation of a spherical pressure
wave as it propagates through a homogeneous medium. At
the same time, we consider that in this type of reconstruction
geometry, the contribution to a certain point P from an ele-
ment of receiving area S is proportional to the subtended
solid angle of this element S when viewed from the point P.
The solid angle is inversely proportional to the square of the
distance between the receiving element S and the point P,
which leads to a compensation factor of **1/¢2.”” Combining
the above two factors, we obtain a compensation factor of
“1/£’” as shown in Eq. (4).

Reference 15 gave an approximate solution of ¢(r) based
on a three-dimensional inverse Radon transformation with
the assumption that the size of an absorption object is much
less than the distance between the source and the detector. In
that case, the spherical surface over which the surface inte-
gral is computed approximates a plane. Actually, with the
above assumption, ¢ is nearly a constant compared to the size
of the absorption object. However, in most cases, for ex-
ample, the situation in our experiments, the size of an ab-
sorption object can be comparable to the distance between
the source and the detector. Under this condition, the solution
given by Ref. 15 is not appropriate, while our solution shown
in Eq. (4) still holds and therefore is more general.

Although the modified back-projection reconstruction
shown in Eq. (4) is valid for three-dimensional distributions
of photoacoustic sources, we here consider only the imaging
of thin slices of absorption objects in turbid media to evalu-
ate our imaging system. The slices of absorption objects lie
in the imaging plane perpendicular to the axis of laser irra-
diation. The photoacoustic signals from turbid media outside
the imaging plane are regarded as background that will not
provide information for the imaging of absorption objects. In
this case, the detection of acoustic pressures over the 27
angle in the imaging plane is sufficient to achieve high reso-
lution in the imaged cross section. For 2D imaging, the ap-
proximate inverse solution for the circular-scan geometry
can be represented by
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which is an integral over 6, around the thin slice of the
object. From Egs. (4) and (5), we see that the reconstruction
of the absorption distribution can be fulfilled by back-
projection of the quantity

1 dp(ro.t)
t ot

t=|rg—rlfv,

instead of the acoustic pressure p(rg,t).
If R(¢) is the impulse response of the detector and P(t) is
the pulse duration of the laser, in the time domain, we have

2801

where T(rg,t) is the piezoelectric signal detected by the
transducer, and * represents convolution. Then, dp(xy,#)/3t
in Eq. (5) can be calculated by an inverse Fourier transfor-
mation,

ap(ro,t) ___\[—ieT(r,0)W(e)
T R w)R(w)
1 +o— T s w

=§7r'f_w mP((:;Ra&)(w)exp(—iwﬁdn ¥

where W(w) is a band-pass window function that suppresses
the frequency component outside the detectable spectrum of
the transducer.

ill. TOMOGRAPHY IN BIOLOGICAL TISSUES
A. Experimental method

A schematic diagram of our experimental setup for pho-
toacoustic tomography is shown in Fig. 1, where a laboratory
coordinate system [x,y,z] is also depicted. A flash-lamp-
pumped Ti:sapphire laser operating at a wavelength of 789.2
nm with a pulse energy of approximately 30 mJ, a pulse
duration of 4.7 ns FWHM, and a repetition rate of 10 Hz,
was used as the light source. The laser is expanded to a 1.5
cm diameter beam when heating the sample surface from
above along the laser axis; this provides an incident power
density within the limit of safety for human skin (100
mJ/cm?) according to the ANSI standard.” In our experi-
ments, the area in a cross section of the sample that is im-
aged is defined by the size of the laser beam. The wave form
and the frequency spectrum of the laser pulse are demon-
strated in Figs. 2(a) and 2(b), respectively, where the curve in
(b) shows the component of R(w) in Eq. (7).

T(rq,t)=p(ro,t)*R(£)*P(1), 6)
1.0 1.0
0.8 2081
0.64 go.s-
30.4- 0.44
502- go.z-
0.0 0.0
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FiG. 2. (a) Wave form and (b) frequency spectrum of
the 4.7 ns laser pulse. (c) Impulse response and (d)
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FiG. 3. Photoacoustic tomography of a slice of chicken gizzard that was
buried 0.5 cm deep in the chicken breast slab. (a) Reconstructed image; (b)
picture of the imaged cross-section of the sample.

The wide-band nonfocused transducer (V323, Panamet-
rics) has a 2.25 MHz centra! frequency and a 6 mm diameter
of the active element. The impulse response and the fre-
quency response of the transducer are demonstrated in Figs.
2(c) and 2(d), respectively, where the curve in Fig. 2(d)
shows the component of P(w) in Eq. (7). Because the fre-
quency bandwidth of the laser pulse is much broader than
that of the transducer, P(w) is constant and Eq. (7) can be
simplified as
¢?p(ro,t)m 1 [(+*~iwT(ry,0)W(w)

a 27) R(@) exp(—iot)dt. (8)

The transducer was mounted on a rotation stage that was
driven by a computer-controlled step motor. The transducer
scanned around the sample with a rotational step size of
1.125° and a rotational radius of 5 cm. The transducer and
the sample were immersed in water. A low-noise pulse pre-
amplifier (500 PR, Panametrics) amplified the acoustic sig-
nals received by the transducer and sent signals to an oscil-
loscope (TDS-640A, Tektronix). Then, 30 times averaged
digital signals were transferred to a computer for imaging.
The experiments were performed with thin slices of giz-
zard tissues or red rubber pieces placed 0.5 cm deep in fresh
chicken breast muscle slabs. For 789.2 nm light the reduced
scattering coefficient 4, and the absorption coefficient y,
for chicken breast tissue are about 1.9 cm™! and 0.1 cm™',
respectively.?> Under this condition, the effective optical at-
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FiG. 4. Photoacoustic tomography of two slices of chicken gizzard that were
buried 0.5 cm deep in the chicken breast slab. (a) Reconstructed image; (b)
picture of the imaged cross-section of the sample.

tenuation coefficient g is 0.77 cm™!. The blood concen-
tration in the chicken gizzard tissue is much higher than that
in the chicken breast muscle. According to our measure-
ments, the absorption contrast between them is greater than
200%. In the experiments, the sizes of the chicken breast
slabs were larger than the size of the laser beam. Therefore,
the imaged area is only a part of a cross section of the
sample.

B. Imaging results

Image reconstruction utilized the 2D modified back-
projection algorithm described in Eq. (5). We used 1.5
mm/us as the estimated sound velocity v, in soft tissues.
When a detected sample has nearly homogeneous acoustic
properties, the small difference between the actual sound ve-
locity and the estimated value will not cause any distortion in
the relative location of the absorption distribution in the
sample. In other words, the absolute locations and sizes of
the detected targets inside the sample may be changed; how-
ever, their relative positions will not be altered.

Figure 3(a) shows the reconstructed image of a thin slice
of gizzard tissue buried 0.5 cm deep in a chicken breast slab.
The gizzard tissue has a nearly rectangular shape (3 mmX6
mm) in the imaging plane and a thickness of about 1 mm.
The picture of the cross section of this sample is shown in
Fig. 3(b) for comparison. In the second sample, two slices of
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FiG. 5. Photoacoustic tomography of a slice of rubber that was buried 0.5
cm deep in the chicken breast slab. (a) Reconstructed image; (b) picture of
the imaged cross-section of the sample.

gizzard tissues are placed 0.5 cm deep in a chicken breast
slab, where the sizes of the two gizzard pieces are different.
The reconstructed imaging is shown in Fig. 4(a) for compari-
son with the picture of the sample in Fig. 4(b).

Based on our experimental system as well as the recon-
struction algorithm, the results of the 2D photoacoustic to-
mography are satisfying. The highly absorbing objects in tur-
bid media with comparatively low absorption were localized
well. The boundaries between the gizzards and the chicken
breast are clearly imaged.

Because both the gizzards and the chicken breast muscles
are soft biological tissues, it is difficult to avoid deformation
when the samples were photographed. For this reason, the
shapes of the gizzard slices in the reconstructed imaging
have minor discrepancies with those appearing in the photo-
graphs. To overcome this problem, slices of red rubber pieces
were used as absorption objects in some of our experiments.
Figure 5(a) shows the reconstructed image of a slice of rub-
ber (with a 1 mm thickness) that was buried 0.5 cm deep in
a chicken breast slab; it fits perfectly with the picture of the
sample shown in Fig. 5(b). In another sample, three circles of
rubber slices with a 1 mm thickness, where the radii of the
three circles are about 4 mm, 3 mm, and 1 mm, respectively,
were adopted as absorption objects. In Figure 6(a), the
shapes and sizes as well as the localizations of the three
rubber slices are all imaged well compared with the picture
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FiG. 6. Photoacoustic tomography of three slices of rubber circles that were
buried 0.5 cm deep in the chicken breast slab. The radii of the three circles
are 0.4 cm, 0.3 cm, and 0.1 c¢m, respectively. (a) Reconstructed image; (b)
picture of the imaged cross-section of the sample.

in Fig. 6(b). In the reconstructed images in Figs. 3—6, we can
see some intensity fluctuations around the absorption objects,
which come mainly from the photoacoustic signals generated
in the background chicken breast tissues.

IV. TESTING FOR RESOLUTION

In order to quantify the actual resolution of our detection
system as well as the reconstruction algorithm, well-
controlled samples with high absorption contrast in transpar-
ent media were measured for imaging. Usually, the expected
highest spatial resolution is estimated to be the half wave-
length at the center frequency of the transducer. However,
when the frequencies of the detected photoacoustic signals
determining the spatial resolution are higher than the center
frequency, the achievable spatial resolution is better than the
estimated resolution at the center frequency. Therefore, we
estimate the possible best resolution to be the half wave-
length at the highest detectable photoacoustic frequency.

Pairs of parallel lines printed on transparencies were
adopted as ideal testing samples, as shown in Fig. 7(a). The
length and width of the dark lines was 8 mm and 0.3 mm,
respectively. The gap d between the two lines was set to be
0.1 mm, 0.2 mm, and 0.3 mm, respectively. Each piece of
transparency with a pair of dark lines was placed in the im-
aging plane. The 2.25 MHz nonfocused transducer scanned-
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around the transparency with a radius of 5 cm. The detect-
able frequency band of the transducer is from O to 4.5 MHz.
Therefore, the estimated highest spatial resolution is 0.17
mm. The reconstructed 2D images of these pairs of lines are
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FiG. 8. Edge-spread function and line-spread function of our photoacoustic
imaging system with a 10 MHz transducer.
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shown in Figs. 7(b), 7(c), and 7(d) for d equals 0.1 mm, 0.2
mm, and 0.3 mm, respectively. The intensity profiles along
the dashed lines (y=1.5 cm) in the 2D images are also pre-
sented. When d equals 0.2 mm or 0.3 mm, the two parallel
lines can be recognized with an obvious gap between them.
However, when d equals 0.1 mm, we can see only one line in
the reconstructed image. In each image, there are some weak
intensity fluctuations around the pair of lines, which come
mainly from acoustic reflection at the edge of the transpar-
ency piece. The results in Fig. 7 show that with the circular-
scan method and the modified back-projection algorithm, we
can achieve a spatial resolution of ~0.2 mm.

The center of the circular scan in the experiments is taken
at the center of each reconstructed image. We can see that in
these 2D images, the spatial resolution at a position near the
imaging center is higher than that at a longer distance from
the imaging center. This kind of blur in the reconstructed
image is mainly caused by the physical size of the trans-
ducer. The blur is greater when the physical size of the trans-
ducer is larger, or the distance from the imaging center is
larger.
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We quantified the spatial resolution of our imaging system
with a 10 MHz wide-band (140% at —60 dB) cylindrically
focused transducer (V312, Panametrics). The transducer has
a 6 mm diameter active element and is nonfocused in the
imaging plane. The estimated highest spatial resolution of
our imaging system with this transducer is about 45 um. A
well-controlled phantom made from red rubber with a high
optical absorption contrast and a sharp edge has been imaged
to obtain the edge-spread function. A line-spread function
was obtained through differentiating the profile of the edge-
spread function. Both the two profiles are shown in Fig. 8.
The line-spread function shows a full width at half maximum
of about 60 pm, which shows that the spatial resolution of
our photoacoustic imaging system is near the diffraction
limit of the detected photoacoustic signals.

V. CONCLUSION

Pulsed-laser induced photoacoustic tomography of ab-
sorption in biological tissues has been studied. A modified
back-projection algorithm derived from an exact inverse so-
lution was used to reconstruct the signals received by a wide-
band nonfocused transducer that scanned circularly around
the sample under detection. Reconstructed images of gizzard
slices and rubber slices buried in chicken breast tissues agree
well with the pictures of samples. Experiments also quanti-

fied the highest 2D resolution that can be achieved by this’

imaging system: using a detection of 24 view, the spatial
resolution is nearly diffraction limited by the detected pho-
toacoustic waves.

Our photoacoustic detection system with the modified
back-projection reconstruction algorithm is proved to be an
effective method for biological tissue imaging with high con-
trast and high spatial resolution. If a high resolution along
the laser axis is required at the same time, scanning of acous-
tic signals along the axis will be necessary.
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An analytic explanation of the spatial resolution in thermoacoustic or photoacoustic reconstruction is pre-
sented. Three types of specific recording geometries, including spherical, planar, and cylindrical surface, as
well as other general cases, are investigated. Analytic expressions of the point-spread functions (PSF’s), as a
function of the bandwidth of the measurement system and the finite size of the detector aperture, are derived
based on rigorous reconstruction formulas. The analyses clearly reveal that the dependence of the PSF’s on the
bandwidth of all recording geometries shares the same space-invariant expression while the dependence on the
aperture size of the detector differs. The bandwidth affects both axial and lateral resolutions; in contrast, the
detector aperture blurs the lateral resolution greatly but the axial resclution only slightly.
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L INTRODUCTION

In the last decade, thermoacoustic or photoacoustic to-
mography of soft tissue utilizing excitation from a pulsed
electromagnetic (EM) energy source, such as radio frequency
or laser, has attracted considerable attention [1-12]. With
this technique, it is assumed that, following a short pulse of
EM illumination, a spatial distribution of acoustic pressure
inside the tissue is simultaneously excited by thermoelastic
expansion, which acts as a source for acoustic response. The
intensity of the acoustic pressure is strongly related to the
locally absorbed EM energy. A wide range of EM absorption
coefficients in soft tissue contributes to a good contrast be-
tween different types of tissues. The effect of thermal diffu-
sion on thermoacoustic or photoacoustic waves in tissue is
always ignored, since the EM pulse duration is often so short
that the thermal conduction time is far greater than the
acoustic transit time through the heterogeneities of the EM
energy depositions. The acoustic waves from the initial
acoustic source propagate toward the surface of the tissues
with various time delays. Ultrasound detectors are placed
around the tissue to record the outgoing acoustic waves, re-
ferred to as the thermoacoustic or photoacoustic signals,
which carry information about EM absorption as well as
about the acoustic properties of the tissue. For medical im-
aging and diagnostics, an appropriate reconstruction algo-
rithm is required to map the initial acoustic sources, or EM
absorption distribution.

To detect thermoacoustic signals, one approach is to use
focused ultrasound transducers, in which the lateral resolu-
tion is determined by the focal diameter of the transducer
and the axial resolution by the bandwidth [5,6]. Another ap-
proach is to use small-aperture unfocused detectors—ideally,
point detectors—that can receive ultrasound from a large
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angle of acceptance. Thus far, rigorous reconstruction algo-
rithms have been reported with point-detector measurements
from idealized recording configurations, including the fully
enclosing spherical recording surface [7], the planar record-
ing surface of an infinite extent [3,8], and the cylindrical
recording surface of an infinite length [9]. In these algo-
rithms, the acoustic property of the tissue is often assumed to
be homogenous as the speed of sound in soft tissue is rela-
tively constant at ~1.5 mm/us. Details can be found in Ref.
[7] of the reconstruction formulas for spherical geometry and
in Refs. [8,9,11] for the planar and cylindrical geometries.

Spatial resolution is one of the most important parameters
in thermoacoustic reconstruction. Acoustic inhomogeneity
blurs the reconstructed image, but in some cases, the blurring
can be corrected. A limited view also affects spatial resolu-
tion due to lack of sufficient data; in this case, the recon-
struction is incomplete and reconstruction artifacts occur
[12]. These two topics will not be addressed in this paper.
There are two other main factors that limit spatial
resolution—the finite bandwidth of the detection system and -
the size of the detector aperture. Past research work has only
estimated the spatial resolution in thermoacoustic tomogra-
phy based on measurements or numerical simulations. No
theoretical analysis has been reported.

In this paper, a complete theoretical explanation of the
degree of spatial resolution that results from varying the
bandwidth as well as the detector aperture will be presented.
Analytic expressions of point-spread functions (PSF’s) on
the spherical, planar, and cylindrical recording surfaces will
be explicitly derived. The paper is organized as follows. In
Sec. II, the inverse problem and the reconstruction formulas
for thermoacoustic tomography will be briefly reviewed. De-
tailed derivations of bandwidth-limited PSF’s in the above
three measurement geometries as well as more general cases
will be presented in Secs. II A, III B, I C, and HI D, respec-
tively; and resolution will be discussed in Sec. IILE. In Sec.
IV, detailed derivations of PSF’s as a function of detector

079-845-4450; electronic address: LWang@tamu.edu; URL:  aperture size will be shown in Secs. IVA, IVB, and IVC.
http://oilab.tamu.edu Section V will provide discussion and conclusions.
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II. RECONSTRUCTION FORMULAS

We will first briefly review the inverse problem and the
rigorous reconstruction formulas for thermoacoustic tomog-
raphy. It is well known that, in response to a heat source, the
pressure p(r,r) at position r and time ¢ in an acoustically
homogeneous medium obeys the following equation [13]:

- 1 & B
p(r’t)_?Efp(rvt)“—-é;aﬂ(rvt)v (l)

where C, is the specific heat, H(r,?) is the heating function
defined as the thermal energy deposited by the EM radiation
per time and volume, B is the isobaric volume expansion
coefficient, and c is the speed of sound. The heating function
can be written as the product of a spatial absorption function
and a temporal illumination function:

H(r,t)=A(r)I(t). 2)

Assuming that the illumination is a Dirac & function such as
I(t)= (1), and taking the following Fourier transform on
variable f=ct,

i;'(r,k)=Ijmp(r,T)exp(ikT)dT, 3)
the solution of Eq. (1) becomes the integral
P(ro.k)= —ikcznf f fvd3rA(r)5k(r,r0), @)

where 7= p/C, and G,(r,ry) is the Green’s function satis-
fying the following equation:

(V242G (r,xrp) =~ 8(r—r). )

In general, the Green’s function in three-dimensional free
space can be written as [14]

exp(ik|r—ry|)
4m|r—ro)

Gy(r,rp)= ()

Actually, the initial thermoacoustic pressure excited by the
&(t) EM illumination is equal to py(r)=T(r)A(r), where
the Griineisen parameter I'(r)= 17(r)c2 may be inhomoge-
neous. Then, Eq. (4) can be expressed by the following form:

B(ro.k)= ik f f fvd’rék(r,ro)po(r). )

The inverse problem is to reconstruct the absorption dis-
tribution A(r) or the initial thermoacoustic pressure distribu-
tion py(r) from a set of data p(ry,t) or f(ry,k) measured at
position ry. In general, the Green’s function can be ex-
panded in terms of some appropriate functions for the corre-

-
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sponding recording geometries. Then, based on the orthogo-
nality of the appropriate functions, reconstruction formulas
can be derived.

In spherical recording geometry, it is assumed that the
recording surface is a spherical surface ry=(ry,8,,¢,) in
the spherical polar coordinates r=(r,6,¢), where 8 is the
polar angle from the z axis and ¢ is the azimuthal angle in
the x-y plane from the x axis. The sample under study lies
inside the sphere, i.e., A(r)=A(r,0,¢) where r<r, and
A(r)=0 when r>ry. The rigorous reconstruction formula
for A(r) can be written as [7]

1 +e
A(r)= daq) f k p(ry .k
(r) mf fno o], dk p(rg k)

(2m+1)j,(kr)
><m2=0 W”m(no-n), ()

where d{}y=sin 6,d6d@y; n=r/r and ny=ry/r are unit
vectors; j(-), kf,,')(-), and P,(-) are the spherical Bessel
function of the first kind, the spherical Hankel function of the
first kind, and the Legendre polynomial function, respec-
tively. In addition, the integral range over variable k in Eq.
(8) can extend to from — to 0 by simply taking the com-
plex conjugate and using the following properties:
P*(ro.0)=p(ro.— k). [ja()]*=ju(2), and [K"(2)]*
=hP)(z) when z is real and positive, where “x” stands for
the complex conjugate.

In planar recording geometry, it is assumed that the mea-
surement surface is the z=0 plane, i.e., ry=(xg,y,,0) in the
Cartesian coordinates r=(x,y,z). The sample lies above the
plane, i.e., A(r)=A(x,y,z) where z>0 and A(r)=0 when
z<0. The rigorous reconstruction formula for A(r) can be
written as [8,11]

1 +x 4+
A(x,y,2)= m‘[ J:m dxodyof_m dk p(rg,k)

p=|4|
XI f dudv
p=0

Xexpl —iz sgn(k) Viki= pi]exp[iu(xo-—x)
+iv(yo—y)], ©)

where p= VuZ+o?, sgn(k)=1 when k>0, and sgn(k)=—1
when k<0.

In cylindrical recording geometry, it is assumed that the
measurement surface is a circular cylindrical surface r,
=(po,¥0.29) in the circular cylindrical coordinates r
=(p,¢,z). The sample lies in the cylinder, ie., A(r)
=A(p,¢,2) when p<pg, and A(r)=0 when p>p,. The
rigorous reconstruction formula for A(r) can be written as
[9,11]
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FIG. 1. Diagram of the recording geometry: a recording surface
S, completely encloses another recording surface Sy; there is a
point source A at r, inside So; R is the distance between an arbi-
trary point at r and the point source A; ry and r; point to a detection
element on the surfaces S and S, respectively.

1 27 +0o +00
Alp,p,2)= mfo d%f_m dzofo dkp(rg,k)

+k
x [ dyexslintzo=2)]
-k

S (oK =)
X 2 exp[ln(‘PO ‘p)]HE,”(po\/'k_z—_'yi)’

(10)

where J,(-) and Hf,l)(-) are the Bessel function of the first
kind and the Hankel function of the first kind, respectively.
In addition, the integral range over variable k in Eq. (10) can
extend to from — to 0, by simply taking the complex con-
jugate and using the following properties: 5*(xo,k)=p(ro,
—k), [J(D)]*=J,(2), and [HP(2)]*=HP(z) when z is
real and positive.

1. BANDWIDTH-LIMITED PSF

As shown in Fig. 1, assuming a point source A(r)=&(r
—r,) at r,, the pressure at the recording point ry can be
expressed as

B(rg.k)=—ikc?*nG(r,,xo). 1)

Suppose the detection system is bandlimited in the
temporal-frequency domain and characterized by a low-pass
function A (k). The amplitude of the acoustic wave vector
k= w/c, where  is the acoustic angular frequency. The de-
tected signal at the recording surface ry becomes §’(rg,k)
=H(k)p(ry,k) instead of p(ry,k). But the reconstruction
formulas, Egs. (8)—(10), for point-detector measurements in
the spherical, planar, and cylindrical recording geometries,
respectively, remain the same. Replacing p(ry.k) by
P’ (rg,k) in these reconstruction formulas will give us the
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bandwidth-limited analytic expressions of the PSF’s to be
derived below for the different geometries.

A. Spherical geometry

The point source at r,=(r,,8,,9,) in the spherical co-
ordinates can be written as

A(r)= ;1; 8r—rz) 8(¢— @,)8(cos 8—cos ;).  (12)

The Green’s function can be expanded according to the
following identity (ro>r,,k>0) [14]:

~ ik < ) "
Gil(ra ro)= 7~ 2 U+ Djikra)hi (kro) Pi(mg-no),
(13)
where n,=r,/r,.

Replacing p(ry,k) by p’(rp,k) in Eq. (8) and considering
the following identity [14]:

4T
[ J, 40P Pt = 577 8t

(14)
the resulting reconstruction for A(r) is
1 [+ -
AyD)==— | Hk)KdKDY, (2m+1)
27 0 m=0
XPm(na'n)jm(kra)jm(kr)' (15)
Further, taking into account the following identity [15]:
- _ _ sin(kR)
2 (2m+ )Py (0, 0)jp(krg)jn(kr)= =jo(kR),
m=0 kR
(16)
where R=\/r2+r?—2r,r cos(n,-n), one can obtain
1 +o
Ay(r)=5— f H(k)jo(kR)K?dk. (17)
0

Particularly, if H(k)=1 for k=0—0, considering the
following identities [14]:

| intknjnthr okt sz or-r. 09
0 r

2_‘,0 (2m+1)P,(n,-n)=478(@— @,) 8(cos 8—cos 6,),
(19)

Eq. (15) reduces to a point source the same as the expression
in Eq. (12), which actually verifies the reconstruction Eq. (8).

056605-3




M. XU AND L. V. WANG

B. Planar geometry

The point source at r,=(x,,y,,z,) in the Cartesian coor-
dinates can be written as

A(x,y,2)=8(x—x,)8(y—y,)8(z~z,). (20)

The Green's function can be expanded as {14]

Gy(ry,rp)= _;fff d3 CXp[zK (ro ra)]

(21)

where K= (X, K, .K,).

Using the detected signal at the recording surface ry,
P'(xg.k)=H(k)p(ry,k), to replace P(rg.k) in the recon-
struction Eq. (9), and considering the following identities:

jjxexp[i(u+Kx)x0]dx0=2m$(l(x+u), 22)

fjxexp[i(v+Ky)y0]dy0=21ré‘(Ky+ v), (23)

J’+°° X, exp(—iK,z,)
TK P k2
expliz, sgn(k) VkZ —p’]
=imsgn(k) . |k|>p,
ViZ= p?
(24)

the resulting reconstruction for A(r) is

= ! f+wkdkrlk ]jp='k|d d
Ab(x.y,z)—m . (k) oo udv
Xexp(—iuAx—ivAy)

k)exp[—xsgn(k)Az\/kz pi]
ViZ—p?

X sgn(

(25)

where Ax=x-x,, Ay=y—y,, and Az=z—2z,.

In the evaluation of the integral in Eq. (24), we replaced k
with k+iy as suggested in Ref. [14], where y is a small
positive real number. Since there will be some damping of
the wave in a physical system, we then complete a contour
integral in the complex plane and let y approach zero.

Changing the integration order of du dv and dk, and fur-

ther letting w=sgn(k)\/kz—p2, Eq. (25) reduces to

1 .
Ab(X,y,Z)=Wfff_mdudvdw

Xexp(—iulbx—ivAy—iwAz)H(k),
(26)

where k2=u2+p2+ w2,
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Particularly, if A(k)=1 for —w<k<w, Eq. (26) be-
comes a point source as the original one in Eq. (20).

In general, by changing the integral from the Cartesian
coordinates into the spherical coordinates,

(u,v,w)—k=(k,0,¢),
(Ax,Ay,Az)—>R=(R,a,B),
where R2=(Ax)?+(Ay)?+(Az)?, one can rewrite Eq. (26)

as

1
A,,(x,y,z)=(2—1;)—;fjf exp(—ik-R)H(k)d*k.
(27)

The integration of Eq. (27) can be further simplified to

1 [+=
A"(X’y'Z):Wfo H(k)k*dk

”
x[ exp(—ikR cos y)sin ydy2w, (28)
0
where ¥ is the angle between k and R, i.e.,

4=
Ap(x,y,2)= 777 H(k)jo(kR)k2dk. 29)

C. Cylindrical geometry

The point source at r,=(p,,¢,,z,) in the cylindrical co-
ordinates can be written as
1
A(p,p,2)= ;6(p—pa)5(¢— ?a)8(z2—2,)

+

= ] 1 2 .
= ’_)5(p_pa) E‘I—T",:-ac CXP[Im((P— ‘Pa)]

1 [+
X5— J‘_w explik,(z—z,)1dk, . (30)

The Green's function can be expanded as (k>0)
[11,14,17]

. +x
Culra o)== 3 explim(e,—p0)]

+x
X f dk, explik (z,—z0)]

X1 (pJH D (py), (1)

where pu=JkT—k? when k2<k2, and p=iVk?=k? when
K2>k2,
Using the detected signal at the recording surface rg,

P’ (ro.k)=H(k)p(ry.k) to replace P(xg,k) in the recon-
struction Eq. (10), and considering the following identities:

056605-4




ANALYTIC EXPLANATION OF SPATIAL RESOLUTION. ..

27

. dogexpligg(n—m)]=2m6yp, (32

+:dzo explizo( y—k)1=27(y—k,), (33)

the resulting reconstruction for A(r) is

1 [+ _ +k
Ay(psp.2)= I;IJO k dk H(k) f_k dk,explik,(z,—2)]

4o .
X ¥ explim(@g— @)W m(1p) I m(1p).

m=-—w

(34)
Changing the integration order of variables k and k, and
taking into account the following identity [15]:

+0o0
,,,Z_m explim(@,— @)1 m(pa)Im(np)=Jo(pD),
(35)

where D= /p>+ p*—2p,p cos(¢,— ¢), one can simplify Eq.
(34) to

1 [+
Ap90)= gz [ ke exalik(z=2)]

X f "k (k)dk Jo(uD). (36)
lk,|

4
By changing the integral variable k with u= Vk“—k;, one
can get
1 [+= .
Anp.9.0= gz | dkoexpl=ikAz)

4+
x|, H(kypduJdo(uD), (37

where k2=k2+ 2, Az=z—2z,.
Then, one can denote Ax=x—x,=DcosfB and Ay=y
~y.=Dsin B, and introduce k,=  cos a and k,= u sin e,

where D=y Ax)2+(Ay)2 and y.=\/k,2+ky2, and rewrite

the far right integral in Eq. (37) as

4o 1 +x
fo pdu H(k)Jo( uD)= 5 f f_w dk.dk,

Xexp(—ik Ax—ik,Ay)H(k),
(38)

where kK>=k2+ p?=k2+ k2 +k..
Therefore, Eq. (37) can be rewritten as

PHYSICAL REVIEW E 67, 056605 (2003)

1 +oo ~
Ab(P,QD,Z):(i'W—)gJ'ff_mdkzdzxdkyH(k)
X exp(— ik, Ax—ik,Ay—ik,Az), (39)

which is the same as Eq. (26). Thus, A,(p,¢,z) takes the
same form as Eq. (29),

1 f+=_
Moo= 3z [ AR, (40)

where

R=1(Ax)?+(Ay)’+(Az)*
=pZ+p*=2p,p cos(@,— ) +(Az)*.

Particularly, if H(k)=1 for k=0—, Eq. (39) reduces to
a point source the same as the original one.

D. General geometry

We have proved that the bandwidth-limited PSF’s in the
three different geometries share the same expression as
shown in Egs. (17), (29), and (40). As described in these
equations, the PSF is independent of the position of the point
source but dependent on the distance R from the point
source. Therefore, the PSF due to bandwidth is space invari-
ant.

Actually, the space invariance of PSF due to bandwidth
can be extended to more general recording geometries. As
mentioned in Ref. [11], the reconstruction for A(r) can be
expressed by a linear integral:

A(r)=j L dSOLdk Ki(ry,0)p(xg.k), 41)

where S, is the recording surface, which covers the object
under study.

The inverse problem for thermoacoustic reconstruction is
to seek such an integral kernel K (ro,r) for a particular re-
cording surface. For the spherical, planar, and cylindrical re-
cording geometries, the integral kernel K,(ry,r) can be ex-
plicitly given as shown in Egs. (8), (9), and (10),
respectively. For other recording geometries, the integral ker-
nel K, (ry,r) is more complicated or even nonexistent ana-
lytically.

As shown in Fig. 1, suppose another recording surface
S, which could be a spherical, planar, or cylindrical record-
ing surface, can completely enclose surface S . Then, based
on Green’s theorem [17], the pressure j(r;,k) at S, can be
computed by the pressure p(rg,k) on surface S,

9Bi(r1.x0)
pten)= [ [, asf ey 2
0

aﬁ(ro,m)

any “2)

- Gk(rl »To)
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where 8/dng is the normal component of the gradient on
surface Sy and points outward away from the acoustic
source; and ry and r; represent detection positions on sur-
faces Sy and S, respectively. Since the reconstruction based
on Eq. (41) from the measurement on surface S is exact, the
pressure j(r),k) on surface S| must be identical to the ther-
moacoustic pressure directly generated by the source A(r):

peo=| | fvodvour)c‘:k(r.,r), (@)

where V is the volume enclosed by S;.

Now, considering the bandwidth characterized by H(k),
one can rewrite the reconstruction Eq. (41) as

+e _
Ab(l')= j fsodSOJ—w dkl?k(ro,r)[H(k)ﬁ(ro.k)].
(44)

In other words, Eq. (44) gives the exact reconstruction of a

new and unique source A,(r) from A(k)F(ry,k) measured
on surface Sj:

ﬁ(k)ﬁ(rmk)=jffvdVOAb(r)gk(r07r)~ (45)
[

Based on Green’s theorem, the pressure on surface S, can be
computed by the pressure H(k)p(ry,k) on surface So.

which is found equal to A(k)p(r, k) with considering Eq.
(42):

[ ] dso([ﬁ(k)p(ro k)]'m*("’“)

AH(Kk)p(ry,k)]

—G,(ry,rp) _TZSO_"Q__)

3G (ry,rg)

=H(k dS( & —*—
( )ff ol P(ro.k) e

aﬁ(ro,k))
0

=Gi(ry.rp)

=H(k)p(r; k). (46)
This pressure must be identical to the thermoacoustic pres-

sure directly generated by the new source A,(r) in volume
Vo,

]IjvdVoAb(r)Gk(rn,l')=i'7(k)ﬁ(l‘|’k), 47)

ie.,

ﬁ(k)ﬁ(r.,k)=jffv dViAy(r)Gi(ry,r),  (48)
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since there is no source in the volume between the surfaces
Spand §;.

Equation (48) indicates that the new source A »(r) could
be restored from the value ﬁ(k)ﬁ(r, ,k) on surface S, if an
exact reconstruction from data only on surface §, does exist.
In other words, the reconstruction for A(r) from the mea-
surement with the bandwidth A (k) on surface S, is identical
to the reconstruction from the measurement with the same
bandwidth H(k) on surface §, that fully encloses S;. Fortu-
nately, we have already obtained the exact reconstruction
formulas from measurements on such a surface S, as the
spherical, planar, or cylindrical recording geometries. There-
fore, the PSF of the point source at r, as a function of band-
width A (k) from the measurement on surface So is nothing
but the same expression as Egs. (17), (29), and (40) for the
above three specific recording geometries, respectively.

E. Resolution

For convenience, we can denote the PSF symbolically as
F
b

1 ®
H R =3 [ HGokmIE,  @9)

where the subscript b represents bandwidth, and R=|r
~r,|. Equation (49) can be rewritten in another form as

ARy = —1 [dH(R) dH(—R)}, (50)

41rR[ dR T 4R

if we let H(—1)=H(f) and define the following Fourier
transform:

- I f+=_ _
H(t)= ﬁf H(k)exp(—ikt)dk, (51)
where H(1) is the corresponding temporal signal of H(k).

If (k) has a cutoff frequency k., H(k)=1 when k

<k, H(k)=0 when k>k_, the integral in Eq. (49) can be
carried out,

I (&
Fo(R)= 5= fo Jo(kR)K*dk

ke (Sin(k‘k) cos(k.R)|,  (52)

T 27RI\ T kR
ie.,
k2 ji(kR) kD 3j,(k.R)
F, 1 i
FR)= 5 = AR 6@ TR O

By normalizing the PSF of Eq. (53), one can get

3j1(kcR)

F
FrR)= = kR

(54)
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FIG. 2. An example of the PSF as a result of the bandwidth (0, 4 MHz): (a) a gray scale view and (b) a profile through the point source.
(c) Comparison of the PSF’s with different bandwidths: dashed line, (0, 2 MHz); solid line, (0, 4 MHz); dotted line, (2 MHz, 4 MHz);

dot-dashed line, 4 MHz.

The full width at half maximum (FWHM) of the PSF is often
used to represent the spatial resolution. It is easy to show
3j1(x)/x=0.5 when x=2.4983. Therefore,

W —2x2'4983—2>< 24983 =0.7952¢/f,~0.8\
FWHM ™ kc - 27ch/C_ . Cfc ORcy

(55)

where )\, is the wavelength at the cutoff frequency of the
bandwidth. For example, if c=1.5 mm/us, f.=4 MHz, then
Wewum=0.3 mm. The corresponding .’F‘,:SF(R) is plotted in
Figs. 2(a) and 2(b).

_ Sometimes, a detection system has a finite bandwidth
characterized by a central frequency fy with a low cutoff
frequency fi. and a high cutoff frequency fy.. For simplic-
ity, suppose H(k)=1 is in the above frequency range, and
then the PSF can be expressed by

Ko j1lkucR) Ko ji(kiR)
27 kR 27 kR

FER)= (56)

where k;.=27f./c and ky.=27fy./c.

For example, a system is with fo=3MHz, and fi.
=2 MHz and fy.=4 MHz. The corresponding PSF is plot-

" ted as the dotted line in Fig. 2(c). As shown in Fig. 2(c), the

FWHM of the PSF with a bandwidth of (2 MHz, 4 MHz) is
slightly narrower than the FWHM of the PSF with a wider
bandwidth of (0, 4 MHz) [solid line in Fig. 2(c)]. In other
words, due to the absence of a low frequency component, the
high frequency component will cause the FWHM to be nar-
rower. The minimum value of the FWHM can be estimated
in the PSF with a single frequency f. and zero bandwidth.
The PSF in this case is nothing but the integral kemel in Eq.
(49): the zero-order spherical Bessel function jo(k.R). Such
an example, with f,=4 MHz, is plotted as the dash-dot line
in Fig. 2(c). Since j(1.895)~0.5, the minimum Wgwum
=~0.6\ ., where \_ is the wavelength at the cutoff frequency
f.. But, as shown in Fig. 2(c), a PSF that lacks a low fre-
quency component does not concentrate in the center beam
anymore, and the side beams of the PSF slowly attenuate as
the position gets farther away from the point source, thereby
introducing significant artifacts in the investigation of large
objects.
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FIG. 3. Diagram of the detector surface r’ with origin o'. The
vector ry represents the center of detector o' in the recording ge-
ometry with origin o. The vector ry points to an element of the
detector aperture,

In conclusion, the obtainable spatial resolution approxi-
mates to a value between 0.6\, and 0.8\, where X, is the
wavelength at the high cutoff frequency f. . If the bandwidth
is too narrow, the reconstruction based on the wide band-
width measurement becomes inappropriate and the FWHM
of the reconstructed PSF does not properly describe the real
spatial resolution.

IV. EFFECT OF DETECTOR APERTURE

Next, let us derive the analytic expressions of the PSF’s
related to detector aperture size. As shown in Fig. 3, the real
signal detected at position ry can be expressed as a surface
integral over the detector aperture

piwok)= [ [ e owapan, 1)

where W(r;) is a weighting factor, which represents the con-
tribution from different elements of the detector surface to
the total signal of the detector.

Since ry=ry+r’, Eq. (57) can be rewritten as

P'(rg k)= f f Pro+re’ k)W(r')d'. (58)

One can assume a point source at r, and then get the
detected signal at position ry using Eq. (57) or (58). If the
signal is not bandlimited, by substituting p’'(ry.k) for
p(xg,k) in the rigorous reconstruction formulas such as Eqs.
(8)—(10), one can get analytic expressions of the PSF’s for
the spherical, planar, and cylindrical geometries, respec-
tively. In general, the analytic expressions cannot be thor-
oughly simplified for arbitrary detector apertures. In order to
explicitly demonstrate the effects of the detector apertures on
spatial resolution, we will make some assumptions about the
detector apertures.

A. Spherical geometry

As shown in Fig. 4(a), r,, represents the center of detector
o’ in the global spherical coordinates (r, 8,¢) with the origin
at the recording geometry center o. A local spherical coordi-
nate system aligned with rg is used as well. Assume that the
detector is circularly symmetric about its center o’; in this
case, the weighting factor depends only on €', W(r')

FIG. 4. (a) Diagram of the spherical recording geometry: 8’ is
the angle between ry and rg; dI’ is an integral element on the
detector surface; © is the angle of the radius of the detector aperture
to the recording geometry origin o; the extension of the PSF at point
A is indicated; other denotations of the symbols are the same as in
Figs. 1 and 3. (b) Perspective view of the lateral extension of the
PSF’s of all the point sources along a radial axis in the spherical
recording geometry.

=W(8'), where the angle 6’ between r} and ry—the polar
angle of r; in the local coordinate system—varies from 0 to
© depending on the size of the detector. The azimuthal angle
¢’ of ry in the local coordinate system varies from 0 to 27,
The normal of the detector surface at point o’ is assumed to
point to the center of the recording geometry o. The surface
integral in Eq. (58) can be transformed into an integral over
a curve radiating from the center o’ on the surface I’ and the
azimuthal angle ¢':

ﬁ'(ro,k)=f fﬁ(r0+r',k)W(o')r'J1—(no-n')’dqo'dz'
=LIW(0’)\/1—(n0-n')2r’dl’

27
X f P(rp+r' k)de’, (59)
0

where n’=r'/r' and
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e exp(ik|r,—ro—r'])
e e —ro—1|

p(ro+r' k)= (60)

Considering the expansion in the local spherical coordinates,
and denoting m{=ry/ry, my=(6',¢'), and n,=(6;,¢,),
one obtains

ik

exp(ik|r,—xg)) _ __2 @1+ 1)ji(kr,)

4r|r,—rg)

XhD(kry)Ping-nf), (61
where P (n,-ng) can be expanded as [14]

Pi(n,-n{) =P,(cos 6.)P(cos 6")

+2 21 ((ll_: ))' PJ'(cos 0,)P]"(cos 6")
Xcos[m(g,—¢')]. (62)

Then, one can evaluate the following integral:
27
J’ P/(n,-ny)de’ =2mP(cos 6')Pcos 6;). (63)
0

Actually, 8. is the angle between ry and r,, ie., cos 6,
=na . n'O .

Combining the results of Egs. (61)-(63), Eq. (59) can be
rewritten as

P (ro.k)= 1—(ng-n")%r'dl’

xl_zo (21+1)P(cos 8') P (n,-mg)j (kr,)

Xh{D(kry). (64)

By replacing p(ry,k) with p’(xg,k) in the reconstruction
formula Eq. (8) and considering identity (14), one obtains the
reconstruction for A(r):

1
Ay(r)= ;L,W(o')m,,d,,

X 2_0 (2m+1)P,,(n,-n)P,(cos 6')

(1)( 0)

+ 00
X fo ,,,(kra)J,,,(kr)—(—ﬁkzdk. (65)

Letting & and & be the polar and azimuthal angles of
vector n with respect to vector n,, and using an identity
similar to the one shown in Eq. (63), one can rewrite Eq. (65)
as

PHYSICAL REVIEW E 67, 056605 (2003)
Aa(r)=f f W(6')r'1—(ng-n')2de’dl’

1 @
XW,"Z() (2m+1)P,(cos ¥)

(1)( 0)

2
xJ;) ]m(kra)]m(kr)j_wc__)k dk, (66)

where cos F=cos fcos #' +sin Gsin & cos(F—¢').

1. Special spherical aperture

For simplicity, assume that the detector is a small section
of the spherical measurement surface, i.e., ro=|ro|=|rg
+r'|=|ro|=ry. Therefore, one obtains

/1_(n0.n')7r’dl'#r(2, sin6'dé@’, (67)
and
B (k) R (krg)=1. (68)

Substituting the identity Eq. (18) and the following identity
(see the Appendix) into Eq. (65),

2_0 2m+1)P,(n,-n)P,(cos 8')=28(cos §' —mn,-n),
(69)

one obtains
2 o
To .
Ay(r)= s 5(r—r,,)f sin 8’ W(6')d 6’ 8(cos 6’ —n,-n).
0
(70)

Letting y be the angle between n, and n, i.e., n,-n=cos ¥,
2
ro & .
A r)= ';15(’—’a)f sin ' W(0')d6’ &(cos 6’ —cos y)
0

2 '
T e . 86-y
—;zé(r ra)fo sin 8'W(6')dé prowry

2 0
L) ' ’ '
=;75(r—r,,)f0 w(o8')6(6'—v)d8

2

To
= S Sr=rW(). ()
If letting W(0')=1,
2
A= Xr=rUN-U(y=0),  (72)

where U is the step function, U(x)=1 when x>0 and
U(x)=0 when x<0.

Equation (72) indicates that, in this special case, the PSF
only extends along the lateral direction, which is propor-
tional to the solid angle of the detector aperture to the origin
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of the measurement geometry. The perspective view of the
lateral extension of all the points in a radial axis looks like a
cone as shown in Fig. 4(b). The farther the point source is
away from the origin, the more extension the PSF has.
Therefore, the lateral resolution is worse when the point is
close to the detector. But, a lateral resolution superior to the
aperture size can still be achieved if the object under study is
close to the center of the geometry.

2. Small flat aperture

Now, let us consider flat apertures. Sometimes, a set of
small flat detectors is used to form a spherical recording
surface. Suppose the detector aperture is disklike and its ra-
dius is P. Since ny-n' =0 in this case,

Vi=(ng-n")2r'dl'=r'dr’, (73)

where r'=rgtan &. If the aperture is small relative to the
radius of the detection surface, i.e., r' <P<r,, the follow-
ing approximation holds:

12

r
ro—ro= \/r02+r'2—r0°~=-—. (74)

2"0

Neglecting the second-order and higher small quantities, one
can approximate hf,,”(kr(’,)/hf,,”(kro)‘v 1. Then, one can fol-
low the derivation for the special spherical aperture and ob-
tain

1 P
A, (r)= ';25(r—r,,)f0 W(r')r'dr' &(cos ' —n,-n).
(75)

Letting W(r')=1 and approximating r’ =r,tan & ~r, & for
the small-aperture case, one reaches

Pirg  6(8'—7)

,(r)%-;&(r ra)j W—d&'

rd L ,
=;;6(r—ra)f0 &(6'—vy)56

2
= 3 Sr=r UM ~-U(y=Plry).  (76)

Equation (76) indicates that, for the small flat aperture, the
extension of the PSF is primarily along the lateral axis. In
fact, if we substitute © for P/ry, Eq. (76) becomes identical
to Eq. (72) for the special spherical aperture.

Particularly, at the center of the recording geometry, i.e.,
r,=0, we have j,(0)=8,9, Po(-)=1, and h{"(kr)=
— i exp(ikr)/(kr). Assuming W(r')=1, Eq. (65) reduces to

1 [+=
A,(r)=; fo Jjo(kr)exp(—ikro)k2dk

Pro ,
X | —=r'dr' exp(ikry). a7
0rg

PHYSICAL REVIEW E 67, 056605 (2003)

Using the relation ry= \/r02+r’7, one can simplify Eq. (77)
to

rolexp(ik P2+ re—ikrg)—1]
ik )

1 [+
Aa(r)=;f0 Jotkr)k*dk
(78)

Because P<r,, the imaginary part is much less than the real
part and hence can be neglected; as a result, one can obtain

Alr)~ r—; LM Jolkr)sin[k(\PZ+r2—ro)lkdk. (79)

Using the following identity [14]:

40 +x
f jo(ka)sin(kb)k dk=b f Jolka)jo(kb)k2dk
0 0

o
= ﬁ&(b—a), (80)

in the small-aperture case, i.e., P<ry, Eq. (79) reduces to

rg P?
Aa(r)=;;75(r~m). (81)

Equation (79) indicates that the point source at the center
becomes a circle with a diameter P?/ry.

Next, we want to estimate the lateral extension at an ar-
bitrary point. Taking the asymptotic form of the Hankel func-
tion to approximate

R (kr{)
h{D(krg)

exp(ikro)/(krg) rg . "
explikro)(krg) 1y &Pl ro=ikro).

(82)

one can rewrite Eq. (65) as

1 P "y, ' +xr0 sy 1. 2
Aa(r)=; OW(r )r'dr . ;gexp(lkro—tkro)k dk

X 20 (2m+1)P,(n, n)

X Pp(c0s 0')jm(krg)jm(kr). (83)

The above integral is still complicated. Here, we consider
only the spread along r, with the assumption of W(r')
= 1. Substituting P,(n,-n)=P,(1)=1 into Eq. (83) and
considering identity (16), and further approximating
Jo(kNr3+r*=2r,rcos @)~jyklr—r,)) for the small-
aperture case (r’'<€ry, i.e., #'<1), one obtains

1 [+
Alrng)=— fo Jolklr—=rg|)exp(—ikro)k2dk

P ro ,
X j — r'dr' exp(ikry). (84)
0rg
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FIG. 5. (a) Diagram of the planar recording geometry: P is the
radius of the detector aperture; the extension of the PSF at point A
is indicated; other denotations of the symbols are the same as in
Figs. 1 and 3; (b) perspective view of the lateral extension of the
PSF’s of all the point sources along a line parallel to the z axis in
the planar recording geometry. :

)

If we substitute [r—r,| for r, Eq. (84) becomes identical to
Eq. (77). Thus, in the small-aperture case (P<r), Eq. (84)
reduces to Eq. (81) with the replacement of r by |r—r,|:

r(z, P?
A,,(rna)%?&(h—ral—z—r;). (85)

Equation (85) indicates that the point source at which r,
extends in the radial direction to a region with diameter
P2/r is the same as the extension of the PSF at the record-
ing geometry center as shown in Eq. (81). But, in most cases,
this extension is negligible. For example, when using a trans-
ducer with even a 6 mm diameter to image a 10-cm-size
breast on a recording geometry surface with a 15 cm diam-
eter, P2/ry=3%/150=0.06 mm. However, the lateral exten-
sion at r is on the order of 2rP/r, as shown in Eq. (76). For
example, even at r=1cm, 2rP/ry=(2)(10)(3)/150
=0.4 mm>0.06 mm. ’

B. Planar geometry

In this case, we reasonably assume that the detector sur-
face is flat. As shown in Fig. 5(a), r, represents the center of
the detector o' in the global Cartesian coordinates (x,,z)
with the origin at the recording geometry center o. Let x’,

PHYSICAL REVIEW E 67, 056605 (2003)

y', and z' be the differences of the coordinates between ry
and r, respectively. For the following two linear transla-
tions:

ro—Th: Xo—Xo+x'=x, Yo—Yoty' =y, (86)

I, Xg—X,— X' =X,, Ya—Ya—Y =ys, (87

there exist the following translational invariances, |r,—rg|
=|r,—xo|-
The detected signal at ry can be written as

p”(ro,k)=J' j W(r')p(ro+r' k)d?r’

=I f W(x',y")p(xo+x",yo+ " k)dx'dy’.
(88)

Using p’(rg,k) to replace p(ry,k) in the reconstruction
formula Eq. (9), and following the similar derivation shown
in Sec. NI B, one gets the reconstruction for A(r) as

Aa(x,y,z)=f f W(x',y")8(x—x,)8(y—y,)

X 8(z—zg)dx'dy’

= [ [ ey ota=satx)85-y0+y)
X &z—zz)dx'dy’, (89)
ie.,
Ay ) =Wi—x0y-y)8z=2).  (90)

Assuming that the detector surface is a disk with radius P,
and W(x',y")=1 when JxZT+y"2< P, Eq. (90) reduces to

Ay(x,y,2)=U(P—-D)&(Az), (91)

where D= \/(Ax)2+(Ay)2, and Ax=x—x,, eic.

Equation (91) indicates that without considering the band-
width, the PSF does not extend along the axial direction, but
it greatly extends in the lateral direction. Moreover, the lat-
eral extension is proportional to the detector aperture. The
perspective view of the lateral extension of all the PSF’s in a
line parallel with the z axis looks like a cylinder as shown in
Fig. 5(b). Therefore, the lateral resolution is totally blurred
by the detector aperture, no matter where the point is.

C. Cylindrical geometry
1. Special cylinder aperture

We first assume that the detector surface is a section of the
cylindrical measurement surface. As shown in Fig. 6(a), ro
represents the center of the detector o’ in the global cylin-
drical coordinates (p,¢,z) with the origin at the recording
geometry center o. Let ¢’ be the difference between the

 polar angles of r and ry, and p’ and z” be the projections of
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FIG. 6. (a) Diagram of the cylindrical geometry: ¢’ is the dif-
ference between the polar angles of ry and r); p’ and 2’ are the
projections of r’ in the x-y plane and the z axis, respectively; Z is
the half width of the detector aperture along the z axis and ® is the
half angle of the width of the detector aperture parallel to the x-y
plane to the center of the recording geometry; the extension of the
PSF at point A is indicated; other denotations of the symbols are the
same as in Figs. 1 and 3. (b) Perspective view of the lateral exten-
sion of the PSF’s of all the point sources along a radial axis in the
cylindrical recording geometry.

r’ in the x-y plane and the z axis, respectively. Two sides of
the detector are along the z axis from —Z to Z, and the other

two sides are parallel with the x-y plane and the polar angle
@' varies from —® to ®. For the following two translations:

NI @@t e’ =95, zp—z0+2 =25, (92)
l'a—*l';: ‘Pa—"Pa_‘P'=‘P.:» Za‘_’Za—Z'=Z,’,, (93)
there exist the following translational invariances, |r,—rj|

={r;=rol.
The detected signal can be written as

ﬁa(l'o,k)=f fﬁ(l'o'f'l",k)W(r’)dzr'

- [ [ rerrerore imisr e a

(94)
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Replacing p(ry,k) by p’(ry,k) in the reconstruction for-
mula Eq. (10), and following the derivation shown in Sec.
IIC, one can get the reconstruction for A(r) as

1
Aa(p,cp.z)=f f;ﬁ(p-pa)ﬁ(‘p—sv{,)

X 8(z—2,)W(¢",2")ppd’dz’

= %6(1)-0‘1)} j o=@, +¢')

X&z—z,+2" YW(¢',2")de'dz’, (95)

ie.,

Aa<p.<p.z)=%‘16<p—pﬂ)ww—¢a,z—za). (%6)

If W(e',2')=1, ¢’ from —® to ®, and z’ from —Z to Z,
Eq. (96) can be rewritten as

Alp.@.2)= %&p-pa)u((b— le= o NU(Z-|z-2,]).
97

Equation (97) indicates that the extension of the PSF in
the cylindrical geometry combines the properties of the
PSF’s in the spherical and planar geometries. In this special
case, the PSF does not extend along the radial direction. The
perspective view of the lateral extension of all the point
sources in a radial axis looks like a wedge of pie as shown in
Fig. 6(b). In the z-axis direction, the PSF extension is pro-
portional to the detector size along the z axis, just like the
planar geometry. While parallel with the x-y plane, the lateral
extension is proportional to the angle of the detector width to
the z axis, just like in the spherical case. Therefore, a lateral
resolution that is better than the aperture size can be obtained
parallel to the x-y plane if the object under study is close to
the center of the geometry; however, the lateral resolution
along the z axis is determined by the detector size.

2, Small rectangle aperture

Sometimes a set of small rectangle detectors is used to
form a cylindrical array. The normal of the detector at the
center point o’ is assumed to point to the center of the re-
cording geometry. Two sides of the detector are along the z
axis from —Z to Z, and the other two sides are parallel with
the x-y plane and have a length of 2P. One can follow the
similar derivation in Sec. ITI C, and get the reconstruction for
A(r) as
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1 (z P
Aa(PJP,Z)=E;I_Z5(za—z—z')dz’f_Pdp' W(e',2")
400
x 3 explim(g,~ 9= ¢")]

m=—

+
Xf pmdp
0

HY (up3+p")

X I 10a) mP) g (98)

where p’ =pgtan ¢'. Let W(@',2")=1.
For the small-aperture case, p’ <py, one can approximate

Hf,.”(#‘lPo"‘P'z) -

H fnl (#po) I ®9)

Further, taking the small-aperture approximation p’
= potan ¢'=po¢’, and considering the following identity

[14]:
+e 1
J;) /"dl""m(”'pa)-]m(ﬂp}z ;6(p—pa)’ (100)

one can rewrite Eq. (98) as

1
Alp,9,2)=U(Z-|z—2,|) ;5(p-pa)

P/po ' ,
X pode’ 8(e,—e—¢'), (101)
—Pipy
ie.,”

P

Alp,@.2)= ﬁé(p—pa)U(——w— %I) U(Z—|z—2z,)).
P Po

(102)

Equation (102) indicates that, for the small flat aperture, the
extension of the PSF is primarily along the lateral axis. In
fact, if we substitute ® for P/p,, Eq. (102) becomes identi-
cal to Eq. (97) in the special cylinder aperture case.

Next, we want to estimate the lateral extension of the PSF.
One can also take the asymptotic form of the Hankel func-
tion to approximate

H(u\p3+ ™)

~ : 2
W eXp[w(\/poz‘va po)], (103)

and then rewrite Eq. (98) as

PHYSICAL REVIEW E 67, 056605 (2003)
1 +o0
Alp,@,2)= EU(Z—Iz—zaI) fo pdp

P
X I_Pdp’ explin(Vog+p"? = po)]

+ 00

><m=E_ _Iu(1p)In(ep)

xexplim(@,—¢—¢')]. (104)

Considering identity (35), Eq. (104) can be rewritten as
1 oo
Adp,2)=5-U(Z- Iz—zal)f0 pdp

P
x f_Pdp’ explin(Vp3+p"*—po)]

XJo(uNp2+p2—2p.p cos(@a— 9= ¢'))-
(105)

Equation (105) is still complicated. Here, by only consid-
ering the points along r,, i.e., letting ¢=¢,, and then tak-
ing the small-aperture approximation (¢’'<1),

JolupZ+p?—2p,p cos(¢,— o— @' N~Jo(ulp—pd)),
(106)

and

"2

P
Np2+p i = py~—,
Pot P mPo~ 50

(107)

one can rewrite Eq. (105) as

P +
Ay(p, ¢, ,z)=U(Z-Iz—za|)f_Pdp'fo ndp

X Jo(lp— pal)exp(imp'?/2po). (108)

Because p' <p,, the imaginary part is much less than the
real part and hence can be neglected,

P +oo
AP, 0, ,z)=U(Z—|z—za|)f_Pdp’f0 rdp
XJo(lp=pal)cos(up’*2po)
_ P [P} 9
=U(Z |Z Zal)f_Pdp (pl ¢9p'
400 . )
X fo dpJo(plp— pal)sin(pp’*12po).

(109)

Using the following identity [15]:
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FIG. 7. An example of the PSF due to the detector aperture: (a) a gray scale view and (b) a lateral profile through the point source.

0<a<b

’

+oc —_—
f dt Jo(ta)sin(th)=4 b*—a
0

0 otherwise,
(110)

one can get the integral in Eq. (109),

P pO)" 7 7 I -1
dp'| = |=—V(p"2po) = |p—p,
j_P p(p 7 [V(p"*12p0)* = |p—p.I%]

(2T TR

P 1 2 123~1 Po
-f [V(p'*12p0)* = |p— pa|*] d(—,-)-
-p P
(111)

The integral of Eq. (111) only exists in the range P2/2p,
>|p—p,|. Therefore, the PSF extends to a region with a
diameter P?%/p,, which is negligible compared to the lateral
extension as we discussed in the spherical geometry expla-
nation.

So far, we have derived the analytic PSF’s due to the
detector apertures for the specific spherical, planar, and cy-
lindrical recording geometries. The explicit expressions can
be given when the detector surfaces are assumed to have the
same geometric properties as the recording geometries. Oth-
erwise, it appears that explicitly carrying out the analytic
derivations is impossible. But, in reality, the detector aper-
ture is very small compared to the recording surface. We
have also estimated axial extension in this case and found
that it was negligible compared to lateral extension.

V. DISCUSSION AND CONCLUSIONS

In Sec. III, we proved that the PSF as a function of band-
width is space invariant. In Sec. IV, we demonstrated that the
finite aperture of the detector extends the PSF for different
recording geometries.

Finally, we attempt to analyze the combined effects of
bandwidth and detector size together. Assume that the de-
tected signal is bandlimited, characterized by H(k) with a
cutoff frequency k., and the detectors have the same geom-
etries as the recording surfaces. One can then follow the
derivations in Secs. IIl and IV and reach the following re-
sults.

(1) Spherical geometry:

Ap(r)= f f W(O)FESF(R')risin6'd6’do’,
(112)

cos y=cos Gcos ¢
+sin Bsin ¢ cos(F—¢’), and 8 and & are the polar and azi-
muthal angles of vector n with respect to vector n,, respec-
tively.

(2) Planar geometry:

where  R'=\r’+ri-2rr,cos ¥,

A,,,,(x,y,z)=ffW(x',y')fgsF(R')dx'dy', 113)

where R'= \(x—x,+x") +(y—y,+y" ) +(z—2,)%.
(3) Cylindrical geometry:

Aba(p,¢,z)=j f W(e' .2 )FPN (R )ppd'dz’,
‘ (114)

where R' = \Jp*+ pi—2pp, cos(¢— @, + ¢ ) +(z—2,+7' ).

Equations (112)-(114) clearly reveal that the PSF can be
regarded as a convolution of the detector aperture with the
space invariant f},’SF. However, in the spherical geometry
case, the convolution becomes complicated as shown in Eq.
(112). Further, we can imagine how complicated the convo-
lution could be with an arbitrary recording geometry using
arbitrary-aperture detectors.

Let us take the PSF in the planar geometry case as an
example, which is shown in Fig. 7. The detector aperture is
assumed to be a disk with a radius of I mm and a cutoff
frequency f.=4 MHz. In the axial direction, the extension of
the PSF is similar to that shown in Fig. 2(b), which is deter-
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mined by the bandwidth. However, as shown Fig. 7(b), the
PSF greatly expands in the lateral direction, and its corre-
sponding Wrwinm=2 mm, which is physically limited by the
detector size.

In conclusion, spatial resolution as a function of band-
width is space invariant for any recording geometry when the
reconstruction is linear and exact. The bandwidth limits the
obtainable spatial resolution. The detector aperture blurs lat-
eral resolution greatly at different levels for different record-
ing geometries but the effect on axial resolution is slight. The
results offer clear instruction for designing appropriate ther-
moacoustic imaging systems with predefined spatial resolu-
tions.
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APPENDIX

The completeness relation of the spherical harmonics
Yim(6,9) [14,16] is

im(6',0")Y 1(0,0)

=8(¢—¢')d(cos 0—cos 8'), (A1)

PHYSICAL REVIEW E 67, 056605 (2003)
where
S+ 1 (—m)! ,
Yin(6:0)=\—7— Tt P'(cos B)exp(im ).
(A2)

Then, do an integral over ¢ from 0 to 2 of both sides of
Eq. (A1),

21+1 (I—m)!

® 1
IZOm=2—I 47 (I+m)!

————P['(cos 6) P]'(cos 8")

27
Xf exp[im(o—¢')]lde
0

o 1
2041 (I-m)! _
=I=20m=2—l a7 (Fm )'P,(cosﬁ)P (cos0)21r5,,,0

8

P(cos 8)P(cos 0')2

27
= §(cos 8—cos 0’)j 8 o—¢')de=58(cos @—cos §'),
0
(A3)

ie.,

0

1—20 (21+1)P(cos 6) P,(cos 8’')=25(cos 6—cos 0').
(A4)
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Time-Domain Reconstruction Algorithms and
‘Numerical Simulations for Thermoacoustic
Tomography in Various Geometries

Minghua Xu, Yuan Xu, and Lihong V. Wang*, Senior Member, IEEE

Abstract—In this paper, we present time-domain reconstruction
algorithms for the thermoacoustic imaging of biological tissues.
The algorithm for a spherical measurement configuration has re-
cently been reported in another paper. Here, we extend the recon-
struction algorithms to planar and cylindrical measurement con-
figurations. First, we generalize the rigorous reconstruction for-
mulas by employing Green’s function technique. Then, in order
to detect small (compared with the measurement geometry) but
deeply buried objects, we can simplify the formulas when two prac-
tical conditions exist: 1) that the high-frequency components of the
thermoacoustic signals contribute more to the spatial resolution
than the low-frequency ones, and 2) that the detecting distances
between the thermoacoustic sources and the detecting transducers
are much greater than the wavelengths of the high-frequency ther-
moacoustic signals (i.e., those that are useful for imaging). The sim-
plified formulas are computed with temporal back projections and
coherent summations over spherical surfaces using certain spa-
tial weighting factors. We refer to these reconstruction formulas
as modified back projections. Numerical results are given to illus-
trate the validity of these algorithms.

Index Terms—Algorithm, geometry, imaging, photoacoustics,
reconstruction, thermoacoustics, time-domain, tomography.

1. INTRODUCTION

ECENT research has suggested that thermoacoustic

tomography using either pulsed radio-frequency (RF)
[1]-[8] or pulsed laser [9]-[12] can be a powerful imaging
technology with good spatial resolution. Within this technique,
when a pulsed electromagnetic irradiation is absorbed by a
tissue, the heating and subsequent expansion of the tissue give
rise to an instantaneous acoustic stress or pressure distribution
inside the tissue. Directly following the pulse irradiation, the
induced pressure distribution prompts acoustic wave propaga-
tion toward the surface of the tissue with various time delays.
Ultrasound detectors are placed around the tissue to record the
outgoing acoustic waves. These detected acoustic waves can be
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used to inversely compute the distribution of the initial acoustic
pressure or electromagnetic absorption, which is related to the
properties of the tissue.

In fact, electromagnetic fields in the RF range of 300 to 3000
MHz are the most useful in the study of soft tissues sized in
centimeters. The RF penetration depth at this frequency range
varies depending on the tissue properties and the RF frequency
[31, [13], [14]. For example, the penetration depths for muscle
and fat are about 1.2 and 9 cm at 3 GHz, respectively, and about 4
and 30 cm at 300 MHz, respectively; most other soft tissues have
penetration depths that fall between these values. In addition, in
this frequency range, there is very little scattering by the tissues
[13].

In a typical application of thermoacoustic imaging using RF,
a short-pulsed RF field illuminates the tissue. The most inves-
tigated and documented effect of RF power on biological tis-
sues is the transformation of energy entering the tissues into
increased kinetic energy in the absorbing molecules, thereby
producing a general heating in the medium [13]. The heating
results from both ionic conduction and vibration of the dipole
molecules of water and proteins [13]. The energy absorbed by
the tissue produces a temperature rise that is dependent on the
cooling mechanism of tissue [13]. Human exposure to RF power
must be limited for safety reasons, and within the mandated
safety limits, the temperature rise per short pulse (such as 1 us)
in soft tissue is very small (on the order of milli-degrees) [6].

Nevertheless, this small temperature rise causes linear expan-
sion of the tissue. The heating and expansion are greatest in
those regions of the tissue that absorb the most RF power. There-
fore, a distribution of acoustic pressure or stress inside the tissue
is induced immediately during the short RF-pulse irradiation pe-
riod due to heterogeneities of the RF energy deposition and the
Griineisen parameter inside the inhomogeneous tissue. Thermal
expansion due to energy deposition is commonly referred to as
the thermoelastic effect [15]. The generated acoustic pressure
is on the order of mBar [6]. Such a small value does not cause
tissue damage.

Subsequently, after the RF-pulse irradiation, the acoustic
stresses inside the tissue relax. They act as instantaneous
acoustic sources inside the tissue, which promote acoustic wave
propagation. These acoustic waves contain acoustic frequencies
ranging from very low frequencies to high frequencies that ap-
proximate the reciprocal of the RF pulse duration. The acoustic
detectors, called ultrasound transducers [16], which can convert
mechanical stresses into electrical signals, are placed around
the tissue to record these outgoing acoustic waves, commonly
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referred to as thermoacoustic or photoacoustic signals. These
thermoacoustic signals carry information about the RF absorp-
tion or initiated stress as well as about the acoustic properties of
the tissue. Since the RF absorption or initiated stress is directly
related to certain tissue properties (i.e., ionic conductivity and
water components, etc.), the key problem is how to reconstruct
the distribution of the RF absorption or initiated stress from the
measured thermoacoustic signals around the tissue surface.

The short duration of the RF pulse allows one to restrict the
RF energy deposition within the absorbing volume and mini-
mize the thermal diffusion effect on the thermoacoustic waves.
In thermoacoustic imaging, the RF pulse duration, 7, is typ-
ically shorter than the thermal transport time of absorbed RF
energy in thermal conduction, 7,1, the condition that is com-
monly referred to as thermal confinement [17]. The condition
for thermal confinement can be expressed as 7, < Typ, ~ l,'f’ /a,
where « is the thermal diffusivity of the irradiated material and
I, is the RF penetration depth or the size of the absorbing struc-
ture. For most soft tissues, & ~ 10% cm? - s=! [14]. For ex-
ample, we are interested in the detection of small absorbers in
sizes from submillimeters to centimeters inside the tissue. We
choose !, ~ mm to underestimate the thermal transport time
Teh ~ 10 ps. The RF pulse used, 7, is typically less than 1 us,
which is much less than 7,;,. Moreover, the time required for an
acoustic wave to traverse the absorption depth !, approximates
to ~ I, /c = 0.7 us, which is also much shorter than Ten, Where
c is the sound speed that is around 1.5 mm/us in most soft tis-
sues [14]. In other words, even in 1 us of RF pulse duration,
the heat transports a length of V@™ ~ 0.3 mm, while in the
same amount of time, the acoustic wave propagates a distance
of e, ~ 1.5 mm, which is far away from the thermal diffu-
sion region of 0.3 mm. Of course, thermal diffusion will slightly
blur the reconstructed images. But, when we try to investigate
targets that are bigger than the thermal diffusion region, for in-
stance, > 0.3 mm, if the RF pulse duration is less than 1 ys, the
thermal effect on the thermoacoustic waves in soft tissue can be
ignored. In addition, the thermoacoustic signal excited by a RF
pulse with finite width can be regarded as a convolution with
the RF pulse profile and the thermoacoustic signal excited by a
6(t) RF irradiation. For theoretical analysis, the short pulse can
be regarded as a delta function.

In general, thermoacoustic imaging can be used for the inves-
tigation of soft tissues with inhomogeneous RF absorption but
relatively homogeneous acoustic properties including the speed
of sound and low acoustic attenuation. For practical purposes,
speed dispersion can be neglected in soft tissues; typically, the
speed increases by about 0.01% MHz™! [16]. In most soft tis-
sues, the speed of sound is relatively constant at ~ 1.5 mm/ps
with a small variation about 5% [14], [16]. Acoustic attenua-
tion in soft tissues is primarily due to the spectra of the relax-
ation processes, which account for the nearly linear frequency
dependence [16]. The total acoustic attenuation in soft tissues
results from combined losses due to absorption and scattering
[14], [16]. In the low megahertz range, acoustic scattering in soft
tissues accounts for only about 10% of the total acoustic atten-
uation [14]. A mean value of the acoustic energy attenuation in
soft tissue is equal t0 0.6 dB-cm~'-MHz " [16]. Typically, the
total energy attenuation for a 1-MHz signal after a 5-cm prop-

agation is about 3 dB, and the corresponding amplitude atten-
uates approximately to 70% of the initial value. Such attenua-
tion is still acceptable, although the spatial resolution will be
blurred at a certain level due to the loss of the high-frequency
signal. For simplicity, the acoustic attenuation is neglected here.
Pure acoustic property differentiation should appeal to conven-
tional ultrasound imaging [16]. The unique advantage of ther-
moacoustic imaging is its ability to detect the inhomogeneous
RF absorption property of tissues when the acoustic property is
homogeneous. An obvious application is the detection of breast
cancer tumors. People have observed that tumors in the breast
have a stronger rate of RF absorption than the surrounding tis-
sues; by contrast, the ultrasonic contrast in soft tissues is quite
low [8].

In previous papers [2]-[4], the authors have presented
studies on scanning thermoacoustic tomography using focused
ultrasonic transducers as in conventional pulse-echo ultrasound
imaging [16]. Each scan line is converted into a one-dimen-
sional (1-D) image along the axis of the focused transducer, and
only a simple calculation is required to construct cross-sectional
images from all of the scan lines. However, the lateral resolu-
tion of this approach is determined by the focal diameter of the
transducer as with conventional ultrasound, and the imaging
region is also limited to the focal length of the transducer. To
obtain a larger imaging view, we use unfocused wide-band
point transducers to record the thermoacoustic signals. In this
approach, a complicated reconstruction algorithm has to be
derived for computing the images from a set of data measured
around the tissue under study. Different recording geometric
configurations result in different reconstruction formulas.

The puzzle of finding good reconstruction algorithms has not
yet been resolved. Some researchers have resorted to approxi-
mated reconstruction algorithms, such as the Radon transform in
the far-field approximation [7], [9], the weighted delay-and-sum
method with experiential weighting factors [10], or the optimal
statistical approach [18]. To date, some rigorous reconstruction
algorithms have been reported for idealized measurement con-
figurations, such as for the fully enclosing spherical recording
surface [5], the planar recording surface of an infinite extent
[19], [20] and the cylindrical recording surface of an infinite
length [21]. However, in practical applications, the recording
surfaces are generally finite and partially enclosing.

In this paper, we will first discuss the inverse problem of ther-
moacoustic imaging. Then, by employing the Green’s function
technique, we will generalize the rigorous reconstruction for-
mulas for three types of recording surfaces: a planar, a spherical,
and a cylindrical surface, which enclose the sample under study.
In order to detect small but relatively deeply buried targets, we
will introduce the following two conditions (details given in
Section II): the high-frequency components of thermoacoustic
signals contribute more to spatial resolution than the low-fre-
quency ones, and the detecting distances between the thermoa-
coustic sources and the detecting transducers are much larger
than the wavelengths of the high-frequency thermoacoustic sig-
nals that are useful for imaging. Taking these conditions into
account, we will simplify the rigorous formulas and present
time-domain reconstruction algorithms, which can be computed
by temporal back projections and coherent summations over
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spherical surfaces with certain spatial weighting factors. Finally,
numerical experiments will be conducted to demonstrate the va-
lidity of these formulas.

II. INVERSE PROBLEM

As discussed in Section I, in typical thermoacoustic measure-
ments, the RF pulse duration is so short that the thermal conduc-
tion time is far greater than the thermoacoustic transit time and
the effect of thermal diffusion on the thermoacoustic wave in the
tissue can be ignored. We focus on small-amplitude thermoa-
coustic propagation using safe levels of RF irradiation. Thus, the
inverse problem that we want to solve is a linear acoustic-wave
equation.

The pressure p(r,t) at position r and time ¢ in an acousti-
cally homogeneous medium in response to a heat source H (r,t)
obeys the following equation [5], [23]:

19% 7]
VHr,0) - ) = g HED O

where C, is the specific heat, H(r,t) is the heating function
defined as the thermal energy deposited by the energy source per
time and volume, 3 is the isobaric volume expansion coefficient,
and c is the speed of sound. The heating function can be written
as the product of a spatial absorption function and a temporal
illumination function of the RF source

H(r,t) = A(D)I(2). @)

As discussed in Section I, the short RF pulse can be regarded as
a Dirac delta function

I(t) = 6(t). ©)

Substituting (2) and (3) into (1) and taking the Fourier transform
on variable £ = ct of (1), one gets

(V2 + K2)j(r, k) = ikc2nA(r) @

where p = 3/C,, and the following Fourier transform pair ex-
ists:

+o00

Br k) = / p(r, ) exp(ikD)dE, ©)
_:o -~

p(r,8) = 5= / B(r, k) exp(—ikT)dk ©

where the acoustic wave number ¥ = w/c and w is the an-
gular frequency and equal to 2= f; and p(r, k) is the frequency
spectrum of the thermoacoustic signal p(r, ). Equation (4) is
a nonhomogeneous Helmholtz equation. Assume that the ther-
moacoustic signals are measured on a surface Sy that encloses
the sample under study, the frequency spectrum of the thermoa-
coustic pressure measured at the position ro on surface Sp can
be expressed as [22]

Blro, k) = —ikc®n BrA(r)Gi(r,r) (D)
\4

where G (T, ro) is the Green’s function of the nonhomogeneous
equation

(V2 + k?)Gi(r, ro) = —8(r — ro). (8)

In general, Green’s function in three dimensions can be written
as [22]

exp (zk|r — ro|)
4rlr —ro]

Gi(r,r0) = )]

Now, the inverse problem is to reconstruct the absorption dis-
tribution A(r) from a set of data p(ro, t) or p(ro, k) measured
at position rq. Equation (7) shows a linear mapping connecting
A(r) and p(ro, k). The solution of A(r) can be expected in a
similar form—a linear integral

Ar) = / / dSo / dki(ro, F)Ri(ro,r)  (10)
So k

where dSp = d~2r0, Sp is the total recording surface, and the
integral kernel K (rp, r) needs to be determined. As shown in
Section III, the integral kernel is complicated. But under most
practical conditions, as discussed below, it can be simplified to
a linear relation with the Green’s function.

The greatest challenge is to detect small (compared with mea-
surement geometry) but deeply buried targets inside the tissue.
Let us check the property of the frequency spectrum of acoustic
waves generated from a small object. Assume there is a homo-
geneous RF absorption sphere with a size of 2a in diameter, i.e.,
the spatial absorption function A(r) = U(a—r), where the step
function U(£) = 1,€£ > 0and U(€) = 0, £ < 0. With a §(t) RF
illumination, the radiated acoustic wave from this sphere can
be expressed as p(r,t) = nctU(a — |r — ct|)(r — ct)/(2r)
[23]. Applying the Fourier transform gives the frequency spec-
trum ~ j;(ka), where j;(ka) is the spherical Bessel function
of the first kind. The main beam of the above spectrum is in a
belly shape with maximum amplitude at the central frequency
f. = 0.7¢c/(2a). For example, for an object with a size of 1
mm, f. = 0.7 x 1.5 (mm/ps)/(1 mm) = 1 MHz. Below
100 KHz, the spectrum amplitude is less than 0.1 of the max-
imum value, and particularly at 0 Hz, the spectrum amplitude
is zero, which can be proved using (7) letting £k = 0. In gen-
eral, the frequency spectrum of acoustic waves generated from
a small object concentrates in the relatively high-frequency re-
gion. The dominating frequency or central frequency f. can be
approximated by the reciprocal of the required time 7 for an
acoustic wave to traverse the object length [, i.e., fo = 1/7 =
¢/l. In addition, the boundaries of large objects can also be re-
garded as small structures, which are also determined by rel-
atively high-frequency signals. In other words, only the rela-
tively high-frequency thermoacoustic signals can restore small
absorbers as well as the boundaries of big absorbers.

During measurement, the transducer for ultrasonic imaging
[16] can be employed to receive thermoacoustic signals. The
ideal transducer for receiving ultrasound would have a wide dy-
namic range and a wide frequency response. Most commonly,
transducers are operated over a band of frequencies containing
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aresonant frequency, which is determined by the physical prop-
erty of the transducer [16]. A transducer with a resonant or cen-
tral frequency of 1-3 MHz could be perfectly matched to mil-
limeter-sized small absorbers in soft tissues. The real-time lo-
calization of targets should employ transducer arrays, in which
all of the small elements serve independent ultrasound detec-
tors and simultaneously receive thermoacoustic signals at dif-
ferent positions around the investigated tissue [16]. Currently,
a linear or circular array with hundreds of small elements, in
which each element has a size of ~sub-mm with a total length
of perhaps ~10 cm, is available on the market or can be cus-
tomized and manufactured in a research lab {16]. In addition,
the measurement geometry is relatively big compared with the
small targets. For example, when using a spherical measurement
configuration with a radius ro = 5 cm, even at f = 100 KHz,
kro &~ 20 > 1. In another example, for a target inside a tissue
with a distance to the nearest detection element d = 1 cm, at
f = 1 MHz, kd =~ 40 3> 1 and even at f = 100 KHz,
kd~4>1.

Therefore, for practical applications, we introduce the fol-
lowing two conditions: the high-frequency components of the
thermoacoustic signals contribute more to the spatial resolution
than the low-frequency ones, and the detecting distances be-
tween the thermoacoustic sources and the detecting transducers
are much larger than the wavelengths of the high-frequency ther-
moacoustic signals. Taking these conditions into account, we
will simplify the rigorous formulas and present time-domain re-
construction algorithms in the following sections.

III. RECONSTRUCTION FORMULAS
A. Planar Measurement Configuration

The Cartesian coordinate system r = (z, y, z) suits this situ-
ation. As shown in Fig. 1(a), we assume that the measurement
surface is the z = 0 plane, i.e., rg = (z,0,0). The sample
lies above the plane, i.e., A(r) = A(z,y,z) where z > 0 and
A(r) = 0 when z < 0. Taking Fourier transforms on both sides
of (8) on variables z, y and z, it can be shown that the Green’s
function is a triple Fourier integral [22]

_exp [iKz(zo — z) + iK, (3o — y) — iK. 2]
K2+ K2+ K?-k? '
Considering the above expansion, and referencing the mathe-
matical techniques in Norton’s work on ultrasonic reflectivity
imaging [24], we can derive a rigorous reconstruction formula
in the form of (10) as (see Appendix A)

an

+o0c 400
A(z,y,2) = / / dzodyo / dk§(z0, %0, K)Ri(ro,r) (12)
—00 ]

with
] p=|k|
K _-— —_ 2_ 2
K (ro,r) = Tiet // dudvexp[ izsgn(k)v k p]
p=0

- expliu(zo—z)+iv(yo—y)] (13)
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Fig. 1. Diagram of the measurement: (a) planar measurement configuration,
() cylindrical measurement configuration, and (c) spherical measurement
configuration.

where p = /uZ + vZ, and the sign function: sgn(k) = 1if
k > 0,and sgn(k) = -1ifk < 0.

Under the condition |k[jr — ro| 3> 1, which means that the
detecting distances between the thermoacoustic sources and the
detecting transducers are much greater than the wavelengths of
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the thermoacoustic signals that are useful for imaging, (13) re-
duces to (see Appendix A)

12k

Kkl'(),l‘
(ro,7) cznlr ro|

Gk (r,ro), (14)

where “x” stands for the complex conjugate.

It can be shown that n - ng = z/|r — ro|, where n and n are
unit vectors pointing along the z axis and along the line joining
r and rg, respectively. Substituting (14) into (12), we get -

Ar) = / dSo / dk~

- / [aso 5 / dk(~ik)p(ro, k)
 exp(cikle -

rol)
e

(ro, k)G (r,ro)[n - n]

* ng) (15)

where dSp = dzodyo. Recalling the inverse Fourier transform
of (6), (15) reduces to

A(r) = “—//dso[

This is a modified back projection formula of quantity
—(1/t)(8p(ro,t)/0t) with a weighting factor [n - ng). The
required condition is |k|r — ro| >> 1.

1 ap(l‘o,t) . -(16)

¢=lro-rl
¢

B. Cylindrical Measurement Configuration

In this case, a circular cylindrical coordinate system r =
(p, p, 2) is convenient. As shown in Fig. 1(b), we assume that
the measurement surface is a circular cylindrical surface ro =
(po, o, z0)- The sample (of a finite size) lies inside the cylinder.
The Green’s function can be expressed in the cylindrical coor-
dinates (k > 0) (see Appendix B for detail)

400

~ 1
Gi(r,ro) = 1 > exp[im(p - ¢o)]
oo
: / dk, exp [iks(2 — 20)] gm0, 0y kz)  (17)

—00

where if K2 < K%, g (5, p0, k) = (i/2) Tm(s0) 5 (upo)
with p = E2Z-kZ if kI > K gmk(p,po,k) =
In(—ipp) Km(—iptpo) With g = /K2 = K2 Jon(), HSD(:),
I,() and K,(-) are the Bessel function of the first kind, the
Hankel function of the first kind, the modified Bessel function
of the first kind, and the modified Bessel function of the second
kind, respectively.
After some deduction (see Appendix B), we get the recon-
struction formula in the form of (10) as

+o0

Alpror2) = / dSo / dkf(ro, ) Ki(ro,r) (18
S

where dSo = podpedzo, and
Kp(ro,r) = 27r3c27)p / dry exp fiv(20 — 2)]
' +§ exp [in(po — ¢)] (11z) o 1) . (19
n=—00 Hy (Po Vv k2 - ’72)

Under the conditions introduced in Section II, i.e., pok > 1,
(19) approximates to (see Appendix B)

~ i2k 20— 2)2 x~,
K (rg,r) = s 1-— (Iro- ro|)2 Gi(r,rg). (20)

Adding the complex conjugate of (18) onto itself and then

dividing the summation by two, and further considering
p*(ro, k) = p(ro, —k) and the approximation (20), one gets

400 ”
i
o T
So -0
_exp (—ik|r—ro|) 1— (z0—2)2
47r|r—r0| |r—rof?

A(p, @Y,z ﬁ(!’o, k)

_ / 15 Go=2P
- 21r02 0 jr—rol?
exp (—ik|r—ro|)
C— —ik)dkp(ro, k) ——————*.
/( )z, ) ZEEE
21)
It can be shown that
n-ng = 2~ #dl
[r —ro|

Il’ - r0|2

— ~)2
=‘/1-%‘:% 22)

where p and p, are the projections of r and rp on 2z plane, re-
spectively, and n and ng are unit vectors pointing along the line
joining p and p, and along the line joining r and ro, respec-
tively. Recalling the inverse transformation (6), we can rewrite

_ \[pz + p§ — 2ppo cos(po — ¥)

(21) as
1 Op(ro,t
Alpp2) = —ora / / dSoln - n p(ro ) gl
t <
(23)

This is a modified back projection formula of quantity
~(1/t)(0p(ro,t)/8t) with a weighting factor [n - ng]. The
required condition is polk| > 1 and |k||r — ro| > 1.

C. Spherical Measurement Configuration

This instance has been reported in another paper [5]. As a
consequence, we only briefly review the results here for com-
pleteness.
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We use the spherical polar coordinate system r = (r, 6, ¢).
As shown in Fig. 1(c), we assume that the recording surface is
a spherical surface ro = (79, 8o, o). The sample lies inside the
sphere, i.e., A(r) = A(r,0,¢) where r < ro and A(r) = 0
when r > rg. The Green’s function can be expanded as a series
based on the spherical Bessel function of the first kind j;(-),
the spherical Hankel function of the first kind A,(-), and the
Legendre polynomial P()

Gi(r, 1) = Z(zz+ 1)5i(kr)h{ (kro) P(n - ng), (k> 0)
(24)
where n = r/r, and ng = ro/ry.
We find the rigorous reconstruction formula as
400
Art.9) = [[as0 [ ditmaRatror) @9
So 0

where dSq = 73 sin 8pdfydypg, and

1 i (2m + l)jm(kr)Pm(n.no).

I?k(l‘o, r) = 27(’2

cznr?) m=0 hg)(kro)
(26)
Under the condition krp > 1, one can approximate
~ i2k ~,
Ki(ro,r) ~ ;CT,}Gk(""'O)' 27

Adding the complex conjugate of (25) onto itself and then
dividing the summation by two, and further considering
P*(ro, k) = p(ro, —k) and the approximation (27), we get

A(r,B, (P) = 2 02 / dS()

—/dkp(ro,k)( m)ex_p(__zklro_r_])‘

28
ro 1| (28)

Recalling the inverse Fourier transform (6), (28) reduces to
_ 1 1 9p(ro,t)
Ar.0) = ~5m [ [ asoy 25t .
Sp

Equation (29) shows that the absorption distribution can
be calculated by means of back projection of the quantity
~(1/t)(8p(ro,t)/Bt). The required condition is |k|ro > 1.

As expected, all of the reconstruction formulas—(16) for the
planar measurement configuration, (23) for the cylindrical mea-
surement configuration, and (29) for the spherical measurement
configuration—can be carried out in the time domain. They
share a similar expression, except for the weighting factor [n -
ny]. These formulas can be referred to as modified back-pro-
jections. Compared with (16), (23) and (29) have an additional
factor 1/2. This is because the planar measurement configura-
tion can cover a solid angle of up to 27 only while the other two
configurations can cover a full 47 solid angle.

(29)

IV. NUMERICAL EXPERIMENTS

Now we want to conduct some numerical experiments to
demonstrate the validity of the above time-domain reconstruc-
tion formulas for thermoacoustic imaging.
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Fig. 2. Original sample. (a) Cross-sectional image. (b) Profile along the
horizontal center line.

We consider uniform spherical absorbers surrounded by a
nonabsorbing background medium. For convenience, we use the
centers of the absorbers to denote their positions. The uniform
spherical absorber can be written as A(r) = AoU(a—|r—r,|),
where Ay is the absorption intensity, and a and r, are the radius
and the center of the sphere, respectively. As shown in Fig. 2(a),
assume a sample contains five spherical absorbers with different
absorption intensities and the centers of these spheres lie in a
line parallel to the x axis. For convenience, we call this line the
horizontal center line. As shown in Fig. 2(b), from the smallest
to the biggest, the radii are 0.5, 1, 2, 4, and 12 mm, respectively,
and the relative absorption intensities are 1, 1, 0.75, 0.5, and
0.2, respectively. We also assume that the RF pulse duration is
very short and can be regarded as a delta function, and, conse-
quently, that the thermoacoustic signal p(rg, t) irradiated from
a uniform sphere can be calculated by nc2U(a ~ |R — ct|)(R —
ct)/(2R), where R is the distance between the detection posi-
tion ro and the absorber center ro(R = |rg — rg|) [23]. The
quantity dp(ro, t)/0t in the reconstruction formulas (16), (23),
and (29) can be calculated through the Fourier transform

ap(l'o, t)

o IFFT {—iwp(ro, w)Wa(w)}

(30)
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where IFFT denotes the inverse fast Fourier transform, Wo(w)
is a window function, and the Fourier transform defines

+o0

o(w) = / o(t) exp(iwt)dt. (31)

As we discussed in [6], the factor w in (30) actually represents
a pure ramp filter, which will significantly depress the low-fre-
quency signal. It is helpful for guaranteeing the validity of the
reconstruction (16), (23), and (29). It also indicates that the rela-
tively high-frequency component of the signals play the primary
role in the restoration of the RF absorption distribution inside
the tissue. But, the ramp filter can also amplify the high-fre-
quency noise in such a way that the reconstructed image is not
acceptable from the physical point of view. In order to avoid
this effect, it is necessary to introduce a relatively low-pass filter
Wa(w) characterized by a cutoff angular frequency = 2m fg
A Hanning window is our choice in this case

Wolw) = 05+05cos(1r ), iflw| <9, 32)
otherwise.

7

In addition, W (w) also reflects the limited bandwidth of the
detected thermoacoustic signals that is due to the finite band-
width of the detector. We assume the thermoacoustic waves to
be in a frequency range below 4 MHz, and choose fo = 4 MHz;
then the dominative frequency in wWgq (w) is 1.7 MHz. Here, the
data sampling frequency is 20 MHz.

A. Planar Measurement Configuration

We use the planar measurement configuration as shown in
Fig. 1(a). Assume that the measurement area is 120 mm x 120
mm in the z = 0 plane and that the thermoacoustic signals are
collected at 3600 total detection positions that are evenly dis-
tributed in the measurement area. Such a measurement can be
realized by using a rectangular ultrasonic array or by scanning
a linear array or even by scanning a single detector to cover the
measurement area. The center of the measurement area is (0,
0, 0). The sample center (0, 0, 30) lies 30 mm above the mea-
surement area. Fig. 3(a) shows the reconstructed RF absorption
distribution of the z = 30 mm plane, and Fig. 3(b) shows the
comparison of the original and reconstructed absorption profiles
along the horizontal center line.

B. Cylindrical Measurement Configuration

We employ the cylindrical measurement configuration
as shown in Fig. 1(b). Assume the measurement area is a
cylindrical surface with a length of 90 mm and a radius of 50
mm. One can use a linear ultrasound array, which is vertically
placed and has 30 elements evenly distributed a length of 90
mm, to horizontally scan the sample, with a step size of 3° to
cover the measurement area. One can also vertically scan a
circular ultrasound array with a step size of 3 mm, where the
circular array may have 120 elements evenly distributed in the
array. In these ways, the measurement covers 3600 detection
positions, which are approximately evenly distributed in the
measurement area. The sample center lies at (0, 0, 0), the center
of the measurement cylindrical surface. Fig. 4(a) shows the
reconstructed RF absorption distribution in the z = 0 mm

(a)

.....

: Reconstructed
------- Original

Relative absorption (a.u.)
o
»
1

15 10 -5 0 5 10 15
Horizontal center line (mm)

(b)

Fig. 3. Reconstructed image from planar measurement configuration using
3600 detector positions with high cutoff frequency 4 MHz. (a) Cross-sectional
image at the z = 30 mm plane. (b) Comparison of the original and
reconstructed absorption profiles along the horizontal center line.

plane and Fig. 4(b) shows the comparison of the original and
reconstructed absorption profiles along the horizontal center
line.

C. Spherical Measurement Configuration

Fig. 1(c) shows the spherical measurement configuration. To
simulate a practical condition, we adopt only a half-spherical
measurement area in the upper half space (z > 0). Suppose a
quarter circular array has 30 elements and the radius of the array
is 50 mm. Then one can rotationally scan the array along its ra-
dius with a step size of 3° to cover a half spherical measurement
area. In this way, the, the measurement contains 3600 detec-
tion positions, which are approximately evenly distributed in the
measurement area. The sample center lies (0, 0, 12 mm) inside
the measurement surface. Fig. 5(a) shows the reconstructed RF
absorption distribution of the z = 12 mm plane, and Fig. 5(b)
shows the comparison of the original and reconstructed absorp-
tion profiles along the horizontal center line.

The above examples demonstrate the performance of the
time-domain formulas for different measurement configura-
tions. The reconstructed profiles are in good agreement with
the original distributions. As mentioned before, with a cutoff
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Fig. 4. Reconstructed image from cylindrical configuration using 3600
detector positions with high cutoff frequency 4 MHz. (a) Cross-sectional image
at the 2z = 0 mm plane. (b) Comparison of the original and reconstructed
absorption profiles along the horizontal center line.

frequency fo = 4 MHz, the dominative frequency in wWg(w)
is 1.7 MHz, which corresponds to an acoustic wavelength of
0.9 mm. That explains why the small absorbers, as well as the
boundaries of the big absorbers, can be faithfully reconstructed.
As predicted, the flat bases of the big absorbers are not faith-
fully recovered, which results from the approximations of the
algorithms.

However, in the absence of a high-frequency signal, the small
size structure will be lost. For example, if the cutoff frequency
fa = 1.5 MHz, the dominative frequency in wWgq(w) is about
0.6 MHz, which corresponds to an acoustic wavelength of 2.5
mm. Without loss of generality, we will take the spherical mea-
surement configuration as an example. The other parameters in
the numerical experiment are the same as the example shown in
Fig. 5. As shown in Fig. 6, not only is the small absorber nearly
corrupted, but also the originally sharp borders of the big ab-
sorbers are greatly degraded.

Only a small number of detector positions affect the recon-
structed images. We will again take the spherical measurement
configuration as an example. Suppose a quarter circular array
has only eight elements and the radius of the array is 50 mm.
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Fig.5. Reconstructed image from spherical measurement configuration using
3600 detector positions with high cutoff frequency 4 MHz. (a) Cross-sectional
image at the z = 12 mm plane. (b) Comparison of the original and
reconstructed absorption profiles along the horizontal center line.

One must rotationally scan the array along its radius with a step
size of 11.25° to cover a half spherical measurement area. The
other parameters in the numerical experiment are the same as
in the example shown in Fig. 5. In this way, the measurement
has only 256 detection positions. As shown in Fig. 7, the main
structure of the sample is recovered in the reconstructed image,
but a lot of noisy artifacts occur.

In addition, the signal-to-noise ratio (SNR) should be care-
fully considered in thermoacoustic imaging, since the ampli-
tude of the thermoacoustic signal is small as was mentioned
in Section 1. In general, white noise can be suppressed by av-
eraging over many identical data acquisitions. Denoising can
also be accomplished with more elaborate methods including
Fourier-based filtering and wavelet-based filtering [25]. Fortu-
nately, reconstruction in thermoacoustic imaging is a linear ad-
dition process as shown in (16), (23), and (29). The white noise
in each detector is independent of every other. If there are n de-
tectors, the SNR in the image will be improved by the square
root of n times through summation of the data. Of course, more
detectors and more data acquisitions will increase the cost of the
data acquisition time as well as the detection equipment. Actu-
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Fig. 6. Reconstructed image from spherical measurement configuration
using 3600 detector positions with high cutoff frequency 1.5 MHz. (a)
Cross-sectional image at the z = 12 mm plane. (b) Comparison of the original
and reconstructed absorption profiles along the horizontal center line.
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ally, as with other ithaging modalities, such as magnetic reso-
nance imaging, there is a tradeoff between SNR and the cost of
data acquisition time and equipment.

In the above simulations, we consider the point-detectors. In
fact, a finite detector area will limit the lateral spatial resolution
and affect the axial resolution slightly [6]. A complete analyt-
ical explanation of spatial resolution related to bandwidth and
detector aperture size will be reported in another paper [26].

V. PRACTICAL APPLICATIONS

The time-domain reconstruction formulas—termed modified
back projections—can be derived under the practical conditions
discussed above. We have shown that modified back projec-
tion formulas closely approximate the rigorous formulas under
the above conditions. Unlike the filtered back projection algo-
rithm used in X-ray tomography, which uses the surface inte-
gration over intersecting planes, the modified formulas in our
problems are calculated through temporal back projection and
coherent summation over spherical surfaces with certain spatial
weighting factors. Fortunately, due to the advantage of coherent
summation, these formulas are still applicable to practical con-

(@

Regonstructed - ----+- Original

Relative absorption (a.u.)
o
'S
1

LN B Bn ML LN NN BUEC SN N BLELELELE SLELELELE BLALELEL

15 10 -5 0 5 10 15
Horizontal center line {mm})

(b)

Fig.7. Reconstructed image from spherical measurement configuration using
256 detector positions with high cutoff frequency 4 MHz. (a) Cross-sectional
image at the z = 12 mm plane. (b) Comparison of the original and
reconstructed absorption profiles along the horizontal center line.

ditions with a finite extension or partial enclosure even though
they are derived from idealized recording surfaces. Of course,
finite recording surfaces only provide limited spatial views, but
that is adequate in practical applications.

The planar, spherical, and cylindrical recording surfaces
may cover most measurement configurations. Among them the
planar measurement geometry may be the easiest to implement.
A two-dimensional (2-D) planar ultrasonic transducer array can
be used to detect the thermoacoustic signals as in conventional
ultrasound imaging. For example, Hoelen et al. [10] used this
kind of recording geometry in their photoacoustic imaging.
They adopted a delay-and-sum algorithm with experiential
weighting factors, which worked well in dealing with their ex-
perimental data. Our research shows that the spatial weighting
factor [n, ng] does exist in the back projection formula of (16)
for the planar recording configuration. This is an interesting
result in our theoretical analysis, which indicates that (16)
should be a more accurate form than the one used by Hoelen
etal.

The spherical recording configuration may be more suitable
for external organ imaging such as breast cancer detection where
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in practice, only a semispherical measurement surface can be
implemented. For example, Kruger et al. employed this kind
of measurement geometry [7). In their experimental system,
multiple discrete transducers were mounted on a hemispher-
ical bowl and could scan nearly a 27 solid angle surrounding
the breast volume. In the data processing, they assumed that the
size of a typical absorbing object was much smaller than the de-
tecting distance, and that the spherical surface, on which the sur-
face integral was computed, approximated a plane. Therefore,
the inverse Radon transform was approximately used to recon-
struct the image as in X-ray tomography. Obviously, the above
far-field condition is not strict, especially when the absorption
source is far away from the center of the spherical geometry and
results in reconstruction artifacts. Our theoretical analysis gives
a more reasonable reconstruction formula (29), which can im-
prove the quality of the reconstructed images.

The cylindrical recording configuration partially combines
the properties of planar geometry and of spherical geometry.
The reconstruction formula (23) shows a spatial weighting
factor [n,mg] < 1, which is dependent on |z — z;|. The
weighting factor reaches the maximum value [n,ng) = 1 at
z = zp, which indicates that the cross-sectional image of any
2o plane is primarily determined by the data measured on the
circle of the same plane. For example, if some small strong
absorption sources at a size of several millimeters lie on the 2
plane inside a weak absorption background at a size of several
centimeters in diameter, a set of circular measurement data
detected on a circle with a radius of several centimeters on the
2o plane would be sufficient to yield a good cross-sectional
image. In our initial work [5], [6], we used this kind of circular
measurement to investigate some phantom samples and the
reconstructed images agreed with the samples very well. But,
if there are other absorbers outside the z; plane, the thermoa-
coustic signals from these absorbers also reach the detectors
in the zo plane. Thus, a set of circular measurement data on
the zg plane only could not distinguish between the absorbers
on or outside of the plane. In this case, three-dimensional
measurement and reconstruction must be used.

In fact, the choice of measurement configuration depends on
the practical needs. From the physical point of view, these recon-
struction formulas, (16), (23), and (29) for planar, cylindrical,
and spherical configurations, respectively, are the same, except
that the spatial weighting factors resulted from the measurement
geometries. In addition, the weighting factors in the above equa-
tions are obtained through first-order approximations. In prin-
ciple, high-order approximations can be derived.

Finally, it has to be pointed out that an inhomogeneous
acoustic property, such as the speed of sound variation, might
blur the reconstructed images. The experiments as shown in [5]
and [6] demonstrated that the small speed variations between
fat and muscle or gelatin did not result in significant recon-
struction artifacts. The reason is that thermoacoustic waves
are produced internally by RF absorption and are propagated
one-way to the detectors. Thus, a small speed variation does not
affect the travel time of the sound very much in a finite-length
path, for example, 10 cm, which is a typical breast diameter.
Therefore, in thermoacoustic tomography, satisfactory contrast
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and resolution are obtainable even in tissue with a small degree
of acoustic inhomogeneity.

VI. CONCLUSION

In this paper, we have presented time-domain reconstruction
algorithms for the thermoacoustic imaging of biological tissues.
They are computed through temporal back projections and co-
herent summations over spherical surfaces with certain spatial
weighting factors. Numerical experiments have demonstrated
the validity of their applications. These formulas (or high-order
approximations of the rigorous reconstruction formulas) can
serve as the basis for time-domain thermoacoustic or photoa-
coustic imaging in biological tissues.

APPENDIX A

The delta function can be written in the Cartesian coordinates
as

6(!‘ - 1‘0) = 6(.’1,‘ - 1’0)6(‘5/ - y0)6(2).

Taking Fourier transforms on both sides of (8) on variables z,
Y, and z, it can be shown that the Green’s function is a triple
Fourier integral of (11). If the recording surface Sy is infinite, we
may take 2-D Fourier transforms on z¢ and yq of p(z¢, o, k),
i.e., multiplying both sides of (7) by exp(iuzo + ivyo) and in-
tegrating with respect to o and yo from —oo to +00, one gets

(A1)

/ dzodyp exp(iuzo + vy )p(zo, ¥o, k)

B k 2 + 00 400
= 2500 /dz/ dzdyA(z,y, z) exp(iuz + ivy)
—00
exp(-iK,z)
/dK K77 (A2)

where p = Vu? + 12, (p > 0).

The integral of the far right of (A2) can be computed by the
contour integration (2 > 0), because there will always be some
damping of the wave in a physical system [22], [24]

+o00
exp(—iK,z)
K, ——~
[
—00
z 2 _
iwsgn(k exp[t sgn(k)\/k " lk‘ >p
— \/k7 2 (A3)
exp|—zy/p?—k2
-7 02— k2 1 |k| <p
where sgn(k) = 1 for k > 0 and sgn(k) = —1 for k < 0.

Here, we use the values of k for |k} > p to do the reconstruc-
tion. Those of k for |k| < p correspond to evanescent waves and
will have no contribution to the reconstruction.

»

*
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In the case |k| > p and 2z > 0, (A2) becomes

. . 2
/ dzodyo exp(iuzo + zvyo)mp(wo, Yo, k)

+oo +o0

= /dz // dzdyA(z,y, z) exp(iuz + ivy)
0 -

exp [iz sgn(k)\/k? — p2]
VkE—p? )

Multiplying both sides of (A4) by exp(—iuz’ — ivy’) and inte-
grating with respect to « and v letting p from O to | k|, and further
multiplying both sides of (A4) by k exp| —iz'sgn(k)/k? — p?|
and integrating with respect to k£ from —oo to 400, gives

(A4)

-sga(k)

+oo  p=|k}

/ / dzodyo / dk / / dudv

X exp [zu(a:o -z )] exp [iv(yo — y')]

. 2P0, Y0, k) kexp [—-iz'sgn(k) \/EZ———p"’]

kc2n

+o0 +00

/dz//dxdyA(x Y, 2)

exp |1 [ (- z’)sgn(k)ﬁz——_p—]

. / kdksgn(k) T
p=k|

. / / dudv exp [iu(z — z')] exp [iv(y — ¥')] . (AS)
p=0

Rearranging the orders of integration of the right-hand side of
(AS), we get

+o0 +o0 400 .
right = / dz / dzdyA(z,y, 2) / / dudv
(1] —00 —_00
x exp [iu(z — z')] exp [iv(y — y)]
T exp [z(z - 2')\/k? - p2]
. kdk
/ \/p_,,z
exp —i(z =2} /k2—p ]
kdk
./ —/k? — p?
If we let w = sgn(k)y/k? — p?, (A6) reduces to

+00 oo +oo
right = / dz / dzdyA(z,y,2) - / / / dudvdw
0 —00 ~—00

x exp [iu(z — 2)] exp [iv(y — y')] exp [i(z — 2")w]
+o0 +o0

= /dz/ A(z,y, z)dzdy
0 —o0

- (2m)38(z — 2')6(y — ¥')8(z — #)
=(2r)A(e",y', 2'). (A7)

] -(A6)

Then, substituting (A7) into (AS) and dropping the primes, we
get (12) and (13).

Next, we want to show that under certain practical conditions,
(12) reduces to a modified back projection formula. Replacing
K, and K, in (11) with u and v, and then taking complex con-
jugates of (11) and (A3), one gets

é;(r,ro) @ )3 / dudv exp [iu(zo — x) + v(yo — ¥))
K,
/ dK, };; i(z 2 zzcz (AB)

/ IK _exp(iK.2) z)

K2+ p2— k2
—imsgn(k)

RS = TP
AT <

Then, substituting (A9) into (A8), taking the first derivative on
variable z of (A8) and then making a comparison with (13), one
finds

o ~ 2 - .
&Gl(l‘,l‘o) = - %ﬂKk(l'o,l‘) + Ex(ro, 1), (A10)

where
p=+0co

Er(r,ro) = 8% // dudv exp [iu(zo — )]
p=|k|
x exp [iv(yo — )]

. exp [—z\/pi’——k_f] . (A11)

If letting u = pcosy, v = psiny, g — ¢ = Rcosa,
and o — y = Rsina, where p = +Vu?+v? and
R = /(zo — x)2 + (yo — y)?, through changing the variables
of integration, using the identity

2r
% /dq& exp [ipd cos(¢ — )] = Jo(pR) (A12)
0

one can rewrite (Al11) as
1 i
lr,ro) = = [ pdph(oR)exp [~/ =] (A1)
|kl

As [24] shows

+o0
~ ~ 1
Bk (r, o)l < [Eo(e, o)l = 5= / pdpJo(pR) exp(~2p)
0
- 47r(zz +p2)}
z
= ———, Al4
4r|r — ro[? A1
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However
Bz 39 [exp(=iklr ~ ro)
azG"(” rO)—Bz [ 4r|r — ro)
-2 1
_——-——lr — (lr o] + zk) Gi(r,rp). (A15)

Therefore, under the condition |k||r — ro] 3> 1, one gets

2}k z
47|r —rol2 7 4m|r — rof?

> |€k(r,ro)l.

(A16)
This means that the evanescent contribution £ is negligible when
[kllr — ro| > 1 holds. Then, from (A10), we get

2 0 2k 2z,
w2y Oz c2n Jr = ro| Gi(r,ro).
(A17)

9 ~.
lack(l‘,l‘o) >

I?k(l‘o,r) -

Gk( 1Fo) =

APPENDIX B

The delta function can be expressed in the circular cylindrical
coordinates [22]

5(r ~ro) = %6(,, — p0)b(¢ = 90)5(z = 20)

1 1 &
=8 = po)5 Y explim(e - ¢o)]
m=-—00
1
"o / exp [ik.(z — 29)] dk,. (B1)
-0
Assuming a similar expansion of the Green’s function as
~ 1 I
Gi(r,rp) = ) Z exp [im(p — o))
m=-~00
/ dk; exp {"'kz(z - ZO)] . gmk(P1 Po, kz) (B2)

Substituting (B1) and (B2) into (8), we get

2 dQka dgmk

dp?

+p +[( — k2) p* = m?) gmi=—p8(p—po).
(B3)

For the k > 0 case, by letting u = /k? — k2, one obtains

(B4)

gmk(p,po k) = — m(up)H“)(upo)

where if k2 > k?, gmk(p,po,k) = Im(~ipp)Km(—ippo)
with p = z\/k"’ k2. Therefore, (7) can be expressed in the
following form:

-—4‘”2///d3r,4(t) +Z°° exp [im(p — )]

m=-—oo

5(1'0,
—ikc2ny

: / dk, exp ik (z - 20)] gmi(pr 0 ks).  (BS)

For the idealized cylindrical recording geometry, p(ro, k) is
a periodical function of angular variable ¢, with a 27 period

1097

and its extent along z is infinite. Therefore, we may take a se-
ries expansion of the recorded data on variable ¢, and a 1-D
Fourier transform on variable z;. Multiplying both sides of (B5)
by exp(ivzo) and integrating with respect to zo from —oo to
+00, and further multiplying both sides by exp(inp) and in-
tegrating with respect to g from 0 to 27, one obtains

/ o /dz k2 exp(mtpo)exp(z'yzo)
i

“g [ [ [ #ea0 55 explime)

m=—00

x / dpo exp [i(n — m)po)
0

. / dk; exp(ik.z)gmk(p, po, k)

+00
X / dzp exp [’l(')' - kz)‘90]

=4_71F5 / V/ / d3'rA(r) +f exp(imp)2n8,m

m=-00

: / dk, exp(ik.2)gmi(p, po, k2)2w8(y — k.)

= ]w//darA(r) exp(iny)
v

X exp(72)gnk(p, po, 7). (B6)

Here we use the values of k for y2 < k2 to do the reconstruction.
Those values of k for which 42 > k2 represent the evanescent
waves play no role in the reconstruction. In the case of y2 < k2,
we can rewrite (B6) as

2 P(!'O,
/dtp /dzow

x exp(ino) exp(iyzo) = d*r A(r) exp(iny)
Il

xexp(7z)Jn (1p)
x H (upo). (B7)
Multiplying both sides of (B7) by uJ,(up’)/HSY (1po) and
integrating them with respect to p from 0 to 400, then multi-
plying both sides by exp(—iny’) and summing n from ~oc to
+00, and further multiplying both sides by exp(—iv2’) and in-
tegrating them with respect to -y from —oc to +o00, one gets
2r +00

/ dyo / dzg / dy exp [i(z0 — 2')] /

A))
H (upo)

2 i(rOs k)
Hr kc?ny

-5 explinpo - 9]

n=-—00
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+o0 Po 27 +o0 +k
= / dz / pdp/dtpA(r) / dyexp [iv(z — 2')] X /d’y exp [i7(z0 — 2))
~0 0 0 0 —k
+00 ' ' +o0 , A2, (p 52— ,72)
- Y explin(p - ¢)] / pdpdn(pp) Jn(pup’)
" J x H® (pm/kz - 72) . (B12)
+o00 Po 27 9 9
_ . I, We can argue that the values of v for v* > k° do not con-
- / dz / pdp / dpA(r) - 2m6(z — %) tribute to the reconstruction. Taking the complex conjugate of
"o 0 i} . the Green’s function in (B2) and replacing k. by vy, we may ex-
. 278(p — ¢') - 5o - /) clude these  satisfying v > k? and approximate the Green’s

=(27)2A(0, ¢, #). (B8)

By dropping the primes, changing the integral variable from u
to k according to 1 = \/k? — 42 and rearranging the orders of
the integration, one can rewrite the (B8) as

2x 400 +oo

+o0
Alp, W)—— dpo / dzo / dy / kdkp(ro’k)

-0~ 4]y

- Z exp [in(¢o — ¢)]

n=—00

In (pV/RT=72)
X
HY (m\/l??——v2

=___/d¢/ /dkp (x0.F)

E exp [in(po — ¢)]

n=—00

Jos G B—

X [dy expliv(zo—2)] . (B9)
A HY o Fk’*‘—’y"’)

) exp [iv(zo — 2)]

Equation (B9) can be easily written in the forms of (18) and
(19).

Next, we want to show that (18) can be reduced to a mod-
ified back projection under certain conditions. When £ > 1,
according to the asymptotic expansions of the Hankel function,
we get

HO(OHP () ~ ;?g (B10)

Assuming poy/k2 —v2 > 1, ie., pok > 1, one can approxi-
mate

5D (5 11/——"—k2 7) ~ 5pVE=7HP (p0VF = 7).
n 0 -

Therefore

(B11)

- 1 ¥
K (r,ro) = Ity Z exp [in(ypo — ¢)]

n=—o00

function as
+k

~ i =
Gi(r, ro)z—8—7; Z exp[in(po — (p)]/d'y exp [iy(z0 — 2)]

n=-—o0 —k
T (p k2 — 72) HP (p k2 — 72) :
Letting z; = 2o — 2, the second-order partial derivative of (B13)
with respect to 2; has the following relation:
62
3z~
2z
Comparing (B12) with (B13), we get

12k , 1 02
7l'627] 1+ k2 a 2Gk(r’ l‘o) (B15)

Under the condition kfr — ro| > 1

(B13)

(B14)

I?k(l‘o, !‘) =

1 8% ~, 1 8% [exp(—ik|r —ro|)
k2 822 R CHE ) = k2 022 [ 4x|r — ro|
(zO - Z) *
——Il‘ T |2 G (l‘,l‘o). (B16)

Then, (B15) approximates to

12k (20 —- 2)?
” B
n 1- It — o Gk(r ro). B17)
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Effects of Acoustic Heterogeneity in Breast

Thermoacoustic Tomography
Yuan Xu and Lihong V. Wang, Senior Member, IEEE

Abstract—The effects of wavefront distortions induced
by acoustic heterogeneities in breast thermoacoustic tomog-
raphy (TAT) are studied. Amplitude distortions are shown
to be insignificant for different scales of acoustic hetero-
geneities. For wavelength-scale, or smaller, heterogeneities,
amplitude distortion of the wavefront is minor as a result
of diffraction when the detectors are placed in the far fleld
of the heterogeneities. For larger-scale heterogeneities at
the parenchyma wall, by using a ray approach (geometric
optics), we show that no refraction-induced multipath in-
terference occurs and, consequently, that no severe ampli-
tude distortion, such as is found in uitrasound tomography,
exists. Next, we consider the effects of phase distortions
(errors in time-of-flight) in our numerical studies. The nu-
merical results on the spreads of point sources and bound-
aries caused by the phase distortions are in good agreement
with the proposed formula, After that, we demonstrate that
the blurring of images can be compensated for by using
the distribution of acoustic velocity in the tissues in the
reconstructions. The effects of the errors in the acoustical
velocities on this compensation also are investigated. An ap-
proach to implement the compensation using only TAT data
is proposed. Lastly, the differences in the effects of acoustic
heterogeneity and the generation of speckles in breast TAT
and breast ultrasound imaging are discussed.

I. INTRODUCTION

WHEN an electromagnetic pulse is absorbed by biolog-
ical tissue, the heating and subsequent expansion
causes the emission of acoustic signals; this phenomenon
is called the thermoacoustic effect. In thermoacoustic to-
mography (TAT), the thermoacoustic signals from a tissue
sample are collected to map the distribution of the radia-
tion absorption within the sample. Radiation absorption is
closely related to the physiological and pathological status
of the tissue. For example, the microwave absorption rate
of cancerous breast tissue is two to five times greater than
that of the surrounding normal breast tissue. This differ-
ence has been attributed to an increase in the amount of
bound water and sodimn within malignant cells [1]-{3].
The TAT combines good imaging resolution with high
imaging contrast. Microwave imaging alone has the ad-
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vantage of good imaging contrast but suffers from poor
spatial resolution {4}-{7]. On the other hand, purely ultra-
sonic imaging has good spatial resolution but poor con-
trast. TAT capitalizes on the advantages of both methods.

There are a varicty of reconstruction algorithms for
TAT (8]-{13]. By using the approximation that the dis-
tance between the detector and the absorbing object is
much larger than the dimensious of the absorbing object,
a three-dimensional (3-D) radon transform has been used
to reconstruct objects in TAT [8]. A time-domain, focused-
beam-forming technique also has been applicd to image re-
construction in the photoacoustic scanning of tissue struc-
tures [9], and a delay-and-sum algorithm has been applied
to microwave-induced TAT [12]. The above reconstructions
were implemented in the time domain. In the frequency do-
main, exact reconstruction algorithms for TAT have been
implemented in planar, cylindrical, and spherical configu-
rations with series expansion techniques {11}-[13].

An important assumption in the above reconstruction
algorithms is that the tissue is acoustically homogeneous.
For many medical imaging applications, including imaging
of the female breast, this assumption is an approximation.
For example, the speced of sound in the breast can vary
from 1400 m/s to 1550 m/s. Errors duc to the assumption
of a constant acoustic speed, which has never been studied
in TAT, potentially can have a pronounced effect on image
quality. In breast ultrasound tomography (UT), however,
wavefront distortion has been studicd extensively [14]-[17].
The amplitude distortion caused by refraction dominates
the phase distortion induced by acoustic speed variation
in the breast UT [15]. Refraction occurs where there is a
speed mistuatch across a tissuc interface. Becausc of refrac-
tion, rays from a single source can reach the same receiver
by different paths, as shown in Fig. 1. The interference
between these rays causcs strong amplitude distortions in
breast UT. Different dcaberration methods have been pro-
posed to compensate for phase distortion in UT [18], [19].
However, so far they have been inadequate to correct the
strong amplitude distortion caused by refraction [20}.

The effects of acoustic heterogeneity on breast TAT are
estimated to be weaker than those in breast UT for the
following reasons. First, signals in breast TAT are primar-
ily in a lower frequency range (usually below 1.5 MHz [21])
than those in UT. Ultrasound scattering in this frequency
range is weak. Second, in TAT, the acoustic source is in-
duced by electromagnetic absorption; thercfore, only one-
way distortion on reception wave propagation occurs. As
shown in Fig. 2, an acoustic ray, for example §B; D, needs
to pass through interface ¥ only once. In contrast, in pure

0885-3010/$10.00 © 2003 IEER
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Fig. 1. Multipath interference causcd by refraction at boundary
points By and B, in breast ultrasound imaging in transmission mode.
S is a point source and D is a detector.

Fig. 2. Ray refraction at the parenchyma wall with breast TAT. The
outer oval represents the breast surface, in which there is negligible
refraction due to the good match of acoustic speed between fat and
mineral oil. The solid line SB; D represents a ray in the heteroge-
neous model; the dashed line §B2 D represents that in a homogeneous
model. S is a point source and D is a detector; By, B are two points
at the parenchyma wall.

ultrasound imaging, either in the pulse-echo mode or in
the transmission mode, ultrasound distortion includes two
parts: distortion during both transmission and reception
wave propagation. Therefore, the acoustic wave has to pass
through the interface at least twice, as shown in SB;B,D
in Fig. 1. Third, if the dctection distance from the ob-
Jects are properly chosen, the effects of amplitude distor-
tion can be minimized in breast TAT, as will be shown in
Section II1.

In our work, we analyze the cffects of amplitude dis-
tortion and numerically simulate the effects of phase dis-
tortion with the truncated conjugate gradient [22] (TCG)
method. In Section II, we derive equations for the forward
problem in an acoustically homogeneous model, which
yields acoustic pressure from a known distribution of mi-
crowave absorption. In Section ITI, we investigate the ef-
fects of refraction on the wavefront amplitude and phase
in breast TAT. We prove that, in breast TAT, a convex
parenchyma wall (when observed from the outside of the
parenchyma tissuc) does not cause multipath interference
and that the effects of amplitude distortion also are not
severe for a concave boundary. An equation for the for-
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ward problem in an acoustically heterogeneous model also
is introduced at the end of Section III. The inversion al-
gorithm of TCG, and the model and parameters used in
the numerical simulations, are presented in Section TV.
In Section V, the effects of phase distortion arc studied
numerically. We show how the degradation of the recon-
structed images depends on acoustic heterogeneity when
aconstic heterogencity is not considered in the reconstruc-
tion algorithm. Correction of phase distortion should be
the first step for improving image quality in breast TAT
because phase is much more important in imaging than
amplitude when there is no severe amplitude distortion
[23], [24]. Therefore, the reconstructions are implemented
with consideration of acoustic velocity heterogeneity to il-
lustrate how the imaging degradation can be compensated
for. The effects of the errors in the acoustica! velocities
on this compensation also are investigated. In Section VI,
an approach to implement compensation with only TAT
data is proposed. The differences between breast TAT and
breast ultrasound imaging on the offects of acoustic het-
erogeneity and speckles are explained by their differences
in central ultrasound frequency and detection geometry.
Section VII presents conclusions.

I1. THE FORWARD PROBLEM IN A HOMOGENEOUS
MODEL

We begin by deriving a formula for the forward problem
for an acoustically homogeneous mode), then modify it at
the end of Section I1I to consider velocity heterogeneity. In
the case of thermal confinement, the acoustic wave at point
r and time ¢, p(r,t), is related to the microwave absorption
H(r.t) by the following wave equation [25]:

2
ZBD vrpen = B2HED

where v,9 is the acoustic speed, C is the specific heat, and
B is the coefficient of the volume thermal expansion. (1)
can be rewritten in terms of H(r,t):

plrt)= g C// e [r‘-i-r'r’r

where t' = t — |r - r'|/v,. The source term H(r,t) can
further be written as the product of a spatial compouent
and a temporal component, i.e.:

H(r, t)= IO‘P(f)ﬂ(t)» 3

where Iy is a scaling factor proportional to the incident
radiation intensity, ¢(r’) describes the to-be-reconstructed
microwave absorption properties of the medium at r’, and
7(t) describes the shape of the irradiating pulse. Substi-
tuting (3) into (4) results in:

piet) = 222 [[[ o)) —

(2)

(4)
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We proceed by transforming the time-dependent wave
equation into the temporal-frequency domain. Denoting
the Fourier transforms of p and 7 by p and 7, respectively,
we have:

plr, 1) = / B(r., k) explikt)dk,

()
n(t) = / (k) exp(ikt)dk

Substituting (5) into (4) results in:

B, k) = 1ﬁ10kn(k) /// ol ,)cxp (—zklr— 'r'l/v,n)d o
(6)
Define 7, (r, k) = B(r. k)/(2rn(k)), substitute it into (6),
apply an inverse Fourier transform to both sides of the
equation, and obtain the following cquation:

vsofilo 8 / o(r') v,
)= 5 / = g
t=ty(r'.r)
where
ti(r',r) = |r — r'|fvs0. )

is the time-of-flight (TOF) from to r’ to r; pi(x,t) is the
deconvolution of p(r,t) with respect to the length of the
microwave pulse and can be interpreted as the detected
pressure signal when the microwave pulse is infinitely nar-
row. The physical meaning of this equation is that, in an
acoustically homogenous medium, the pressure pi, at a
spatial point r and time £, is proportional to the first-order
temporal derivative of the integration of the absorbed mi-
crowave energy over a spherical surface [a circle in the two-
dimensional (2-D) case]. The spherical surface is centered
at r and has a radius of tusp.

11I. THE EFFECT OF ACOUSTIC HETEROGENEITY
N TAT

A TAT model is shown in Fig. 2. In our imaging system,
mineral oil is chosen as the coupling medium for both mi-
crowaves and ultrasonic waves. The acoustic speed in min-
eral oil is 1437 m/s [26], which is very close to that in fat
[27]. Therefore, there should be negligible refraction at the
boundary between the breast and the mineral oil; conse-
quently, we will consider only the effccts of the acoustical
heterogeneity withiu the breast. More details on our TAT
experimental sctup can be found in [12].

A. Amplitude Distortion Caused by Refraction

Fig. 1 shows the multipath interference in breast ul-
trasound imaging in transmission mode. The acoustic ray
from source S can travel to-detector D by two different
paths, SD and SB; B D, due to refraction at the inter-
faces between different tissues. The interference between

Fig. 3. Diagram showing that no two rays from a point source S will
intersect with each other after being refracted at a convex boundary
¥ and cntering a medium with a slower acoustic speed. S is a point
source; D1 and D, are detectors; ¢1, ¢2, and @3 are the incidence
angles; 61, 82, and @5 are the transmission angles; the solid lines rep-
resent acoustic rays; Bi, Bz, B3 are three points at the parenchyma
wall; vp, vs0 are the mean acoustic speeds in the parenchyma tissue
and the fat tissue, respectively; and vp > vs0.

the two rays can cause amplitude distortion [15]. In the
following subsections, we will first prove that there is no
multipath interferencc in the case of a convex parenchyma
wall in breast TAT. Then, we will show that the amplitude
distortion also is not severe for a concave parenchyma wall.

1. Convex Boundary: In this subsection, we will show
that there is no multipath interference in the TAT of the
breast with a convex parenchyma wall by proving that
no two rays from a source within the parenchyma will in-
tersect with each other after refractions at the wall. The
model is shown in Fig. 3, where S is an acoustic source; vy
and vso are the acoustic speed in the breast parenchyma
and the medium (also the fat), respectively (v, > v50); the
dashed lines are the normals of the boundary at points B;,
Bs, Bs, respectively; ¢y, ¢2, and ¢3 are the angles of in-
cidence; 8y, 6,2, and 03 and are the angles of transmission;
and the solid lines represent the acoustic rays. Because
the boundary is convex, it can be inferred that rotation
from the normal at point By to the normal at point B,
is clockwise and the angle is 8y (positive}. We also have
é2 < 6o + ¢, which can be secn by extending lines SB;
and SB; to the outside of the boundary and noticing that
SB; and §B; will never intersect outside the boundary.
To prove ByD; and By D will not intersect outside the
boundary, we need to show 82 < 8y + 6. According to
Snell’s law, we have:

sinf; = (1 — a) sin dg,
sinf; = (1 - a)singy,

(9)

where o = 1 — v,0/vp, Which is positive when v, > ve.
The problem can be discussed under two conditions:

¢2 < ¢1. In this case, according to (9), we have 8y < 6y
and therefore 82 < g+ 6,. And

¢2 = ¢1. (9) can be transformed to:

(0= asin(¢)

s‘“( 2 )" 2eos(@+0072) (4
N (02—¢2)___ asin(¢)

T2 )T T 2eos(@G+ 00 /D)
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Because ¢, > ¢, and consequently 62 > 8y, it is straight-
forward to obtain 8; — ¢ < 6, — ¢, from (10). Using
¢2 < 8o+ ¢y, we have 6, < 6y +6,. In conclusion, we prove
that, after the rays from a point source go into another
medium with a slower acoustic speed, the rays cannot in-
tersect with cach other when the interface is convex. In an-
other words, for any pairing of point source and detcctor,
there is only one acoustic path that satisfies Snell’s law.
Consequently, no multipath interference occurs and ampli-
tude distortion can be ignored. This conclusion also can be
applied to a boundary with wavelength-scale concave seg-
ments. This kind of boundary can be treated as a convex
boundary approximately because the effects of the small
concave segments can be neglected when the detectors arc
placed in the far field of the segments, as will be shown in
the following subscction. In contrast, multipath interfer-
ence docs occur after rays pass a convex parenchyma wall
in ultrasound imaging, as shown in Fig. 1. This difference
makes the amplitude distortion in TAT of the breast with a
convex, or approximately convex parenchyma wall, smaller
than that in pure ultrasound imaging.

2. Concave Boundary: We realize that, in reality, the
boundary between marmmary tissue and subcutaneous fat
tissue might be concave and quite irregular. In this subsec-
tion, we will show that the amplitude distortion caused by
a concave boundary is not scvere. Basically, this conclu-
sion can be explained as follows. With wavelength-scale or
smaller heterogencities, amplitude distortion of the wave-
fronts is minor duc to diffraction when the detectors are
placed in the far field of the irregular boundary segment.
When the size of the concave segment is larger, according
to the imaging formula of concave boundaries shown be-
low, only imaginary images cxist after the wavefronts from
real objects pass through the concave boundary. Equiva-
lently, no two rays from a point source will interscct with
cach other after passing through the concave boundary
scgment and no strong amplitude distortion occurs. In the
following subsection, we will define two kinds of multipath
interference: focusing-type and nonfocusing-type interfer-
ences. The former can induce amplitude distortion in both
narrowband and broadband signals; the latter can induce
only amplitude distortion in narrowband signals. As a con-
sequence, we need only examine in detail the focusing-type
interference, because signals in breast TAT are broadband.

Definition of focusing-type and nonfocusing-type inter-
ferences. Fig. 4 shows the two different kinds of multipath
interferences. Three different ray paths $B,D, SB,D,
SB3D from source S to detector D are shown, and each
of them is assumed to satisfy the refraction law. The
SB\D and SB;D can be considered as a small modifi-
cation of the straight line SD due to weak heterogeneity,
and $B3D is far away from SD. We use focusing-type in-
terferencc to refer to the interference between pulses along
the paths with the same TOFs. The interference between
SByD and $B,D is of this type. This is because SB; D
and $B,D satisfy the refraction law, and their TOFs are
local minima according to Fermat’s principle [28]. Conse-
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Fig. 4. Diagram to show two types of multipath interferences
caused by a concave boundary: focusing-typc interference between
S§B, D and $B; D and nonfocusing-type interfercnce between $B D
(SB2D) and SB3D. In a focusing-type interference, the different rays
have approximately the same TOF, which consequently yields con-
structive intcrference and strong amplitude distortion. In this case,
the boundary segment around B;B; can be considered as a lens.
In nonfocusing-type interference, the differcnce of the TOFs along
two rays is larger than the pulse width; consequently, the pulses are
separated temporally and no strong amplitude distortion vecurs. See
Fig. 3 for the symbols’ definitions.

quently the rays around $B\D and $B,D should have
almost the same TOF. After noticing that B, and B
are closc to each other, it can be inferred that SB; D and
SB,D have the same TOFs. Actually, the boundary seg-
ment around B; B, can be considered a focusing lens and
can produce strong amplitude distortion even for broad-
band pulscs, as verified by the strong amplitude distor-
tion in broadband breast ultrasound imaging [15]. As a
contrast, we usc nonfocusing-type interference to refer to
the interference between the pulses along paths with dif-
ferent TOFs. The interferencc between SB3D and $B,D
(SB3D) is a nonfocusing-type interfcrence, because Bj is
far from B; and B,, and generally it can be assumed that
|tsB,p —tsB,p| and |tsB,p — tsp,n| (tss, p: tss,p, end
tsp,p are the TOFs along ray paths SB; D, SB,D, and
8By D, respectively) are larger than 1 us, the average pulse
width of thermoacoustic signals in our RF TAT experi-
ments. Conscquently, the pulse along SB;D is separated
temporally from the pulses along SByD, SB,D, and the
interference between SB3D and SB; D (SB; D) is insignif-
icant. Similar analyses can be found in the pure ultrasound
imaging literature (15). _

The signals along SB3D may introduce artifacts in
the reconstructed images becanse detector D reccives two
pulses from source S—one along SB)D and $ByD, and
the other along SB3D. To estimate the effects of signals
along path SB3D, we numerically simulatc refractions at
arbitrary boundaries, at which the locations of source S
and detector D are randomly chosen. We find that the
SByD-type refraction rarely occurs. Therefore, we expect
the artifacts introduced by the signals along SBsD to be
insignificant; and, in the following studies, we consider only
focusing-type interference.

Analysis of focusing-type interference. For a boundary
segment with a sizc of 22 much larger than the wavclength
of interest A, we will use a ray model to study the effects
of refraction. To have focusing-type interference, the posi-
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tions of the source and detector must satisfy the following
equation:

1 + 1 _a

Isg,/cos¢y  lp,p(l—a)/cosgr Ry

where f is the focal length of segment By B; in Fig. 4 and
f = Ri/a; R; is the radius of the segment; and lsp, and
Ip,p are the lengths of line SB; and DB, respectively.
The derivation of (11) can be found in Appendix A. To
have a real image, or equivalently to have two rays inter-
sect after passing through boundary segment BBz, (11)
requires:

lsg,/COS(d)]) > R,/a. (12)

Next, we derive another requirement due to diffraction
for the occurrence of strong amplitude distortion. The
smallest beam width after a wavefront passes through a
boundary segment with a size of 2a is i3, pA/a, where A is
the wavelength of the acoustic wavefront. To induce strong
focusing, for example, to have a beam width smaller than
a at D, we nced to have:

lg,p < a?/X (13)

The right-hand side of the above inequality is the same as
the definition of the near-field length of a plain transducer
when a is considered as the radius of the transducer. It is
well-known that the amplitude can change rapidly in the
near field due to the acoustic interference, but it is much
smoother in the far field. Similarly, if the detector is placed
within the far field of the concave boundary segment, the
amplitude distortion will be less severe in TAT.

Eq. (13) is derived for the case in which a wave-
front propagates perpendicularly to the boundary seg-
ment. When a wavefront is incident obliquely upon the
segment B) By, the effective size of the lens in (13) should
be the projection of its geometrical size onto the plane
perpendicular to the propagation dircction of the incident
wave. Then we have:

I,p < (acos¢1)?/A. (14)

By combining (14), (12), and R; > a, we obtain the follow-
ing requirement for inducing strong amplitude distortion
after passing through the boundary:

Vis,0A , (15)

lsp, > —-a——

It can be seen from this equation that when Ip,p is
Jarge enough:

2
to,p > {20 (16)

the strong amplitude distortion can be minimized. Notice
that the required minimum detection distance in (16} in-
creases linearly with the frequency of the wave.

In the derivation of (11), ray theory is utilized. Ray
theory is valid under the following conditions {29]:

Ip,p € 4d®/), (17)
and

2a > A (18)

Eq. (17) is similar to (13), but the former is stronger;
(17) states that the ray model is valid when the wave prop-
agation distance from the heterogencity is much smaller
than 4a2/); beyond that distance, diffraction must be con-
sidered. In our analysis of amplitude distortion in TAT, we
extend the effective range of the ray model from (17) to
(13). This is based on the assumption that the ray model
overestimates the wavefront distortions due to ignorance
of the diffraction effect. Therefore, if the analysis using ray
theory shows that there is only minor amplitude distortion
when (16) and (18) are met, the analysis from the exact
wave equation should yield the same result.

For a wavelength-scale boundary segment {e.g., 2a <
4)), (18) is violated, and (16) cannot be applied. In this
case, strong amplitude distortion can be minimized by
placing the detector within the far field of the hetcrogene-
ity:

lg,p > 4\, (19

where we have substituted 2a < 4 into (13). Combining
(16) and (19), we obtain the minimum detection distance
for avoiding strong amplitude distortion induced by differ-
ent scales of heterogeneities: ‘

lg,p > max [-(—l—‘s:’i;‘)z, 4A] , (20)

where max{] represents computing the maximum. Using
the following parameters, lgp, < 10 cm (thc assumed
size of the breast parenchyma), and a = 0.07, in which
the mean velocity in the subcutaneous zone vy and the
breast parenchyma v, are assumed to be 1437 m/s [28]
and 1546 m/s [30], respectively, we have lg,p > 4.9 cm
for 1.5 MHz ultrasound and lg,p > 1.63 cm for 0.5 MHz
ultrasound. Thesc requirements can be met easily in TAT
experiments. For ultrasound waves with a frequency less
than 0.5 MHz, it is not necessary to apply (20), because
ultrasound scattering by soft tissue in this frequency range
can be neglected and no severe amplitude distortion is ex-
pected.

The above analysis is made for 2-D TAT. This corre-
sponds to the experimental configuration in which a lin-
ear, or ring array of transducers with a cylindrical surface
is used, and a section image of the breast in the detec-
tion planc is desired. However, becausc of the refraction at
the parenchyma wall, the thermoacoustic waves from the
objects within the detection plane might deviate out of
the plane. Ou the other hand, the signals collected in the
detection plane are transmitted by the objects out of the
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detection plane rather than within it. Consequently, the
obtained image is actually a projection of the out-of-plane
objects onto the dctection plane. To reduce this kind of
error, we can use the technique of compressing the breast
against the chest wall, which has proven to be effective in
reducing wavefront distortions in breast ultrasound imag-
ing. After the compression, the acoustic signals can pass
through the interface more or less perpendicularly. How-
ever, the ultimate solution to this problem is 3-D TAT.
Most of the 2-D results on amplitude distortions (eg.,
(14), (16), (20), and the results on phase distortions shown
later) can be directly applied to 3-D TAT; (11) also can
be applied to analyzc a 3-D convex boundary locally by
substituting ~Ry for R;. Then, it is straightforward to see
that in a 3-D case no two rays can intersect with each other
after passing a convex boundary segment.

In summary, our analysis shows that, in RF breast TAT,
if the detection is madc at a distance to the breast sur-
face required by (20), the amplitude distortion caused by
the refraction at the parenchyma wall is not important be-
causc of the diffraction effect and the fact that TAT signals
are broadband, have low central frequency, and experience
only one-way transmission through the parenchyma wall.
The effect of intramammary fat lobules will be addressed
in Section V1. Thercfore, in the following analysis and sim-
ulations, we will consider only phase distortion.

B. Phase Distortion Caused by Refraction and
Speed Variation

If the background is acoustically homogeneous, an
acoustic ray from source S in Fig. 2 goes along the straight
line SD to reach detector D. When there is acoustic het-
erogeneity, an acoustic ray goes along line SB; D because
of refraction at the interface. Assume there is no change
in the shape of the acoustic pulsc cansed by acoustic het-
erogeneity. The TOF from source S to detector D in the
acoustically heterogeneous model is:

tsoo= [ diju(e"), (21)
sB\D

where v,(r”) is the local acoustic speed, and r” is a point
within linc SB;D. Now, we will show that tsp,p can be
approximated to the second order of a small value ¢ =
(vs(r") — vs0)/vs0 by tsp = [gp dl/u,(r"), where v, is
the velocity used in the acoustically honogeneous model.
According to Fermat's principle, an acoustic ray travels on
the fastest path. In other words, SBy D is a local minimum
of TOF. Now assume B, is displaced to B’ by a small
distance ¢ = |BB/|,

4

Iep = o(e).

(22)
After expanding tspp around tsp, p with respect to g,
we have:

Otspp

2
34 + o(e®).

q=0

tsp'p=tsp,p+4q (23)
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Recalling that $B,D is a local minimum, we have
Btsgr

1 D

q o
BB, /lsp = o(€) due to the weak acoustic heterogeneity
in breast tissue, we have:

. Substituting it into (23) and assuming

tsp = / difo,(r") = tsp,p +oe?).  (24)
SD

The above result can be understood in the following
way. Although the path length of $B, D in Fig. 2 is longer
than that of SD and (Isp, +lpp, —Isp)/lsp = o(e),
path SD has a longer part within the slow-speed area than
path $B)D. The combination of the two opposite effects
leads to the cancellation of the first-order term of ¢ in (24).

Next we will show that the approximation of tsp,p by
tsp includes most of the flight-time variation induced by
acoustic heterogeneity. The TOF from source § to detec-
tor D in an acoustically homogeneous and heterogeneous
model is Isp /vy and tgp, p, respectively. The difference
between them is:

8t = |tss,p — Isp/vso)
= |tsp,p — tsp +tsp — lsp/veol
= |o(e?) + tsp — Isp/vso] = ofe),

(25)

where we used (24). Combining 4t with (24), we have:

tsp—t
I SD SB]DI - 0(5).

ot (26)

Therefore, the error in the approximation of tse,p by
tsp is not important. At last, it should be pointed out that
our analysis of TOF can be applied to both 2-D and 3-D
TAT.

C. Forward Formula ;n an Acoustically
Heterogeneous Model

In our analysis of TOF, we consider only a single in-
terface. The results can be extended to the case involving
several interfaces. In general, the TOF from r to r’ can be
expressed as:

e =[ Ao, @)

where L(r', r) is the straight line from r’ to r, and r” lies
within the line L. Combining (27) and (7), we obtain the
forward formula for acoustically heterogeneous TAT.

Our analysis of TOF is in agreement with the results
from a more rigid mode! [31]. It was reported that the
variation in travel time causcd directly by acoustic speed
hetcrogeneity is a first-order perturbation, and that the
effect of the ray bending on the travel times is a second-
order one. For breast tissue, which is weakly acoustically
heterogeneous, it is enough to consider the first-order per-
turbation by computing the integral of the slowness per-
turbation along straight lines, as shown in (27).
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IV. IMPLEMENTATION AND MODELING OF NUMERICAL
SIMULATIONS

A. Numerical Implementation

It can be seen from (7) that pi(r,t) can be obtained
from ¢(r') after applying two linear operations to it: one
is integration over the object space, the other is differen-
tiation over t. Therefore, in its discrete form, (7) is a set
of linear equations:

My =p, (28)

where M is the matrix representing the product of the
two linear operators. The standard techniques of solving
a linear equation system can be used. We adopted the
TCG method to minimize the object function [|[M¢ — p||
in the sense of least square root and no preconditioner
is used. In the implementation of TCG, instead of the
whole matrix M, a function that gives the multiplication
of matrix M and its adjoin with an arbitrary vector is re-
quired. Consequently, the demand on computer memory
is reduced greatly, compared with many other techniques
that require storing the whole matrix M in memory. An-
other advantage of TCG is that an approximate result can
be obtained by stopping the iteration before reaching the
full convergence. The truncation not only saves compu-
tation time but also provides a way of regularization for
stabilizing the results. In (28), we use the Savitzky-Golay
smoothing method [32}, rather than the finite differentia-
tion method to implement the operation of the first-order
temporal derivative, as the former yields a much smoother
and more accurate result than the latter when data are
noisy. We truncated our simulations after 15 iterations,
which corresponds to the relative changes in the norms of
the results, about 0.7% for the acoustically homogeneous
model and up to 6% for the acoustically heterogeneous
model. In both cases, further iterations yield little visible
finprovement to image and may induce instability.

In our simulations, we choose the 2-D case rather than
the 3-D case because the computational complexity can
be reduced and because it is much easier to interpret and
graph a 2-D image. For the 2-D case, the integration in (7)
is over a curve instead of a spherical surface:

. _ Bloveo 8 o) o
P(nt) =0 f e )

t=ts(r’,r)

where t; is determined by (27). Nevertheless, the conclu-
sions of a 2-D case can be extended to a 3-D one.

B. Model and Parameters in Numerical Simulations

Fig. 5(a) and (b) illustrate the acoustic and RF ab-
sorption models of the breast. respectively. The acoustic
model of the breast in our simulations is based on ex-
perimental results on the distribution of acoustic speed in
the breast [27]-[30]. Acoustic speed in the breast may vary

a B b .- RN
. . .

-

20 mm 20 mm

095 1 105 11 115 0 082 16 25 33
Acoustic velocity Energy deposition

Fig. 5. (a) Distribution of acoustic velocity normalized to vso for a
breast model. The breast surface is represented by the outer circle;
the wall between the breast parenchyma and the subcutaneous fat
is represented by the inner irregular boundary. (b) The microwave
absorption distribution in our mode}l. The four small spots represent
the assumed tumors.

from 1400 m/s to 1550 m/s. Generally, a zone of low veloc-
ity (1400-1450 m/s) characterizes subcutaneous fat [33].
The speed in normal dense parenchyma is higher, vary-
ing from 1500 m/s to 1550 m/s (30]. In Fig. 5 the outer
circles, with a radius of 50 mm, represent the breast sur-
face. The inner irregular boundaries, which are generated
by randomly modifying a circle, represent the walls of the
breast parenchyma. The size of the parenchyma tissue was
changed in different simulations because the ratio of breast
parenchyma to subcutancous fat may change with age.
Usually, a young female breast has less fat than an older
one does. The mean velocity in the subcutaneous zone vy
and the breast parenchyma v, are set to be 1437 m/s [27]
and 1546 m/s {30], respectively. A random component,
which is a normal distribution with a mean of zero and
a variance of 33 m/s, is added to the velocity distribution
to simulate the velocity fluctuations in the subcutaneous
zone [33] and the breast parenchyma [30]. Later, our sim-
ulation results show that the random component of ve-
locity will induce little spread in the images due to the
cancellation after integration. To ensure that the acous-
tic speed does not change sharply within each tissue, the
random component is smoothed spatially by introducing
a corrclation length as shown below. The imaged area is
divided into patches with side dimensions of a correlation
length. The value of the random component at the center
of each patch is determined according to the normal dis-
tribution mentioned above; then the random component
within the patch decreases linearly to zero at the bound-
ary of the patch. We tried different correlation lengths in
our simulations, from 12 mm (about the size of fat lob-
ules in parenchyma tissue) to 3 mm. The image degrades
more with increasing correlation length, but the difference
is minor. The correlation length was chosen to be about
6 mm for the reported results. The speed distribution in
Fig. 5 was normalized to 1437 m/s, which is assumed to
be the acoustic velocity in the medium surrounding the
breast and the mean acoustic speed in the subcutaneous
fat. ’
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The RF absorption model of the breast is shown in
Fig. 5(b). The boundary shapes arc the same as in
Fig. 5(a). The RF absorption coefficicnts in fat, tumors,
and the coupling oil are set to be 0.3, 3, and 0 after be-
ing normalized to that in the parenchyma. The tumors,
shown in Fig. 5(b) as dark spots, are placed evenly along
the horizontal direction to study the dependence of the
distortions in the images on the tumor locations. We set
the radii of the four tumors to.about 1.2 mm to simulatc
approximately the point-source spread caused by acoustic
beterogeneity.

The parenchyma wall in our simulation is generated as
the following equation: r(8) = r,(1 + Ag(8)), where r(0)
is the radius of the boundary at angle 6, r, is the mean
radius of the boundary and is used to represent the size of
the parenchyma tissue, A is the distortion amplitude, and
9(6) generates random numbers within [~1, 1].

The parameters in our simulations are choscn as follows
unless stated otherwisc. Noise is added to the generated
signals so that the frequency range with signal-to-noise ra-
tio (SNR) larger than unity is from 0 to 1.5 MHz, which ap-
proximates our experimental results [21]. The radius of the
circle of detection is set to be 125 mm to meet (16); the an-
gle range of detection is 27 with 400 steps. An insufficient
number of scanning steps can cause radial aliases in the
reconstructed image [13]. Thermoacoustic signals are sam-
pled for 108 us at a sampling ratc of about 14 MHz, which
is sufficient to meet the Nyquist criteria. The 100 mm by
100 min imaging field is mapped with a 256 by 256 mesh. In
our simulations, the thermoacoustic signals are generated
in an acoustically inhomogeneous model, and the recon-
struction is implemented for two cascs—with and without
the consideration of acoustic hcterogeneity.

V. NUMERICAL RESULTS

We first study the effect of acoustic heterogeneity on
imaging when acoustic heterogeneity is considered in the
forward problem but not in the reconstruction. In the re-
construction, v,(r) in (27) is sct to be v,0. Then we show
how to improve image resolution after considering acous-
tic hetcrogeneity in the reconstructions. And, the effects of
measurement errors in vy, v, and ¥ on the improvemncnt
are investigated.

A. Reconstruction Without Considering Heterogeneity

Fig. 6(a)-(d) shows the results when acoustic hetero-
geneity is not considered in the reconstructions. In the four
simulations, the mean radii of the parenchyma wall r,, arc
sct to be 0.8, 0.6, 0.4, and 0.2 of the breast radius. The wall
is distorted randomly in the simulations, and the distor-
tion amplitude is 0.1. We measurc the point-spread width
(PSW), which is the width of the image of a point source
along a specific direction minus its real size, 2.4 mm, and
the boundary spread width (BSW), which is the width of
the blurred parenchyma wall 3 in an image. It is clcar from
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Fig. 6. Images when acoustic heterogencity is not considered in the
reconstructions. The mean radii of the purenchyma wall are set to be
(a) 0.8, (b) 0.6, (c) 0.4, and (d) 0.2 of the breast radius, respectively.
The point-spread width and the boundary-spread width increase lin-
early with the sizc of the parenchyma tissue. Note that the spread
of points outside the parcnchyma tissuc ure much simaller than the
spread inside.

Fig. 7. Diagram for deriving (30), which cstimates the spread of a
point source S along line D) D2 duc to TOF error. S is the intersec-
tion of Dy Dz with the backprojection arch of the signal transmitted
by source S and detected by detector Dy; S; is the corresponding
one at Da.

Fig. 6 that PSW and BSW increasc with the radius of the
parenchyma wall. It is proved in Appendix B that the two
widths can be estimated by the following equation:
w=lya, (30)
where I, is 2r,, in the case of BSW; in the case of PSW, L,
is the length of a ray within the parenchyma tissue along
a specific direction (for example the length of B;B; in
Fig. 7). The PSW is anisotropic becausc I, depends on
direction. This anisotropy of PSW can be verificd by the
observation that thc three tumors within the parenchyma
tissue in Fig. 6(a) and (b) have the same spread along the
horizontal direction, and their spreads along the vertical

direction decrease when the tumors are located away from
the center.
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Fig. 8. Quantitative results of the point-spread width and boundary- )
sprcad width along the horizontal direction in eight simulations in A
which the mean radius of the parenchyma wall changes from 0.1
to 0.8 of the breast radius using a step of 0.1. The corresponding
linear fittings of PSW (dashed) and BSW (dash-dotted) are in good .
agreement with the proposed formula (30). e f
0 mm

Detection curve

Fig. 9. Diagram showing that in TAT a x or wider view can provide
complete data for reconstruction. A view means the angle subtended
by the detection curve when observed from the to-be-imaged object.
Object A has a view larger than 7, and object B has a view less
than «.

Fig. 8 shows the quantitative results (with an error of
+0.8 mm) of the PSW and BSW along the horizontal di-
rection in eight simulations in which the radius changes
from 0.1 to 0.8 of the breast radius with a step of 0.1. The
corresponding linear fitting results for the PSW and BSW
are shown as dashed and dash-dotted lines, respectively.
The slopes of the two lines are 0.071 and 0.0705, respec-
tively, both of which are close to the estimated rate of 0.07
derived from (30) after substituting the parameters used
in our simulations, the radius of the breast 7, = 50 mm
and o = 0.07.

Another interesting point in Fig. 6 is that the PSW
of the objects outside the parenchyma tissue are affected
little by acoustic heterogeneity. Only minor artifacts are
obscrved near them. This is because in TAT a  or wider
view can provide complete data for reconstruction [34].
Here, a view means the angle subtended by the detec-
tion curve when observed from the to-be-imaged object.
For example, object A in Fig. 9 has a view larger than
m, and object B’s is less than =. If an object is outside
the parenchyma tissue, it has at least a m-view detection
range in which the medium between the object and the de-
tectors is acoustically homogeneous. Therefore, a perfect
image can be reconstructed from this part of the data. On
the other hand, the image reconstructed from the part of
signals that experience the heterogeneous medium is weak

048 059 17 27 38
Enargy deposition

Fig. 10. (a) Compensation for the degradation in images when com-
plete acoustic heterogeneity information is included in the recon-
structions. (b) Only exact vp, vy, and £ are included to show the
insensitivity of improvement Lo a random component of the acoustic-
velocity distribution. (c) and (d) Images in which there are (c) 1%
and (d) 3% errors in vp, respectively. (€} Images in which X is scaled
down by 10%. (f) Images in which 20% random error is introduced in
3. These results show the stability of the improvement to the errors
in vp, vy, and L.

in amplitude because the flight-time errors compromise the
build-up strength of the signals.

In addition to blurring of images, acoustic heterogeneity
increases the background noise level and decreases the val-
ues of reconstructed tumors, which consequently reduces
the contrast of tumors in the images and the detectability
of small tumors. A comprehensive quantitative study of
this issue will depend on the SNR of the hardware of the
imaging system, the parameters of the imaging system and
reconstruction algorithms, and the contrast of the to-be-
imaged objects. Meaningful conclusions should be made
based on relevant expcrimental data which we leave for
future study.

B. Reconstruction with the Consideration of Heterogeneity

The exact distribution of acoustic velocity is included
in the model in Fig. 10(a). Although the result is good,
it is not practical, because it is not feasible to obtain the
exact distribution of velocity in the breast by current tech-
nology. A much more practical situation is when the mean
velocities vy, vp, and boundary profile ¥ are approximately
known and the velocity fluctuation within cach area is un-
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Fig. 11. (a)~(f) Close-up images around the central tumor in Fig. 10.
Compensation for the degradation in iinages when complete acoustic
hcterogeneity information is included in the reconstructions. (b) Only
exact vp, vy, and I are included to show the insensitivity of improve-
ment to a random component of the acoustic-velocity distribution.
(<) and (d) Images in which there are (c) 1% and (d) 3% errors in vp,
respectively. () Image in which I is scaled down by 10%. (f) Image
in which 20% random error is introduced in .

known. Different approaches to obtain vy, vp, and bound-
ary profile I will be explored in Section VI. Here, we
will show the effectiveness of our compensation method.
Figs. 10(b)-(f) show the images reconstructed from the
same data as in Fig. 10(a), but the reconstruction algo-
rithm used only vy, v,, and T to study the effects of the
measurement errors in vy, vp, and ¥ on the improvement.
In Figs. 10(b)-(f), the random component of the acoustic-
velocity distribution is ignored. In addition, v,, is dccreased
by 1% and 3% in Figs. 10(c) and (d), respcctively; ¥ is
scaled down by 10% in Fig. 10{e); and a 20% random er-
ror is introduced to ¥ in Fig. 10(f). Figs. 11(a)-(f) are the
corresponding close-up images around the central tumor
in Fig. 10. The r;, in thesc simulations is 0.6 of the breast
radins, and the distortion amplitude of the parenchyma
wall is 0.2.

1. Effect of Errors in Velocities: There is little dif-
ference between the resolution of the reconstructed im-
ages when we consider [Fig. 11(a)] and do not consider
[Fig. 11(b)] the random component of velocity distribu-
tion, although the artifacts in the background in Fig. 11(b)
are a littlc stronger than those in Fig. 11(a). The good
resolution, after ignoring the random component of the
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acoustic-velocity distribution in Fig. 11(b), can be ex-
plained by modifying (30) to:

w= alr")dl,

Ble

(31)

where a(r”) = 1 - v,0/vp(r") and is spatially dependent;
the integration is over the line ByB; in Fig. 7. It can be
found that the contributions of the random component of
velocity are canceled in some degree after the integration
over an acoustic ray.

Comparing Figs. 11(c) and (d) with Fig. 11(b), it can be
noticed that a 1% error in v, does not degrade the imaging
quality much, but a 3% error in v, greatly deteriorates
the imaging rcsolution and contrast. This is because in
our model the difference between vy and v, is about 7%
of their speeds, and a 3% error in v, actually accounts
for 42% of the difference between vy and v,. Therefore,
we conclude that an accuracy of 1% in the determination
of vp is sufficient for significant improvement in imaging
resolution.

2. Effects of Errors in Determining ¥: In the model
in Fig. 11(e), the boundary ¥ is scaled down by 10%.
In Fig. 11(f), a random component is added to the real
boundary, which is implemented by multiplying the real
radii of a boundary with uniform random numbers within
[0.8.1.2]. After comparing Figs. 11(e) and (f) with other
components of Fig. 11, it is found that compensation is
less sensitive to error in determining T as v,. This is be-
causc a 10% crror, which is about 6 mm in the diameter
of the parenchyma wall, adds an error of at most 0.42 mm
to the PSW and BSW according to (30).

V1. DiscussioN
A. Effect of Small Fat Lobules

In breast UT, centimeter-scale fat lobules in the
parenchyma tissue also can cause significant distortion. In
breast TAT, the amplitude distortion due to centimeter-
scale fat lobules is estimated to be insignificant because of
the diffraction cffect, as discussed in Section 11I-A,2. For
example, substituting a = 1 cm, A = 1.5 mm in (13), we
obtain a near-field length of 6.7 cm. Therefore, no strong
amplitude distortion is expected when detectors are placed
farther than 6.7 cm from the lobule. In addition, Figs. 6
(b)~(d) show that the images of point sources outside an
acoustic heterogeneity are affected little by the acoustic
heterogencity due to the completeness of the w-view de-
tection in TAT. This explanation also can be applied to
the distortion caused by fat lobules. When a fat lobule
on one side of an acoustic source causes severe distortion,
the signals that are spared from severe distortion in other
directions still can produce good images.
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B. Determine vy and vp in Ezperiments

Our simulation results in Fig. 10(c) and Fig. 11(c) show _
that a 1% error in vy and v, will lead to minor blurring
but that we still have cnough definition to determine the
configuration and location of the imaged objects. To de-
termine vy and v, within 1% accuracy, we can try dif-
ferent speeds around the averages, which arc 1437 m/s
and 1546 m/s for fat and breast tissue, respectively, with
a step size of 1% velocity. Optimum speeds can be de-
termined by choosing the reconstructed image with the
sharpest parenchyma wall, because errors in v; and v, will
cause the spread of this boundary. Because the variations
of vs and v, between individuals are about 2% and 4%,
respectively, only 15 trials are needed to scan all the combi-
nations. Furthermore, the backprojection method [12] can
be used in each trial because the boundary of the recon-
structed image can be recovered well with this method [34],
[35]. Therefore, the additional computation cost in the tri-
als is estimated to be only double the total computation
complexity.

C. Determine X in Ezperiments

There are two ways to obtain ¥. The first method uses
only TAT signals. It takes advantage of the fact that fat
and parenchyma have both acoustic and microwave con-
trasts. A TAT image is first reconstructed with an acous-
tically homogeneous model. Then an approximate X can
be extracted from the image and plugged into an acousti-
cally heterogeneous reconstruction model to obtain a more
accurate TAT image. As shown in Fig. 6, the boundary
spread of the parenchyma wall in TAT images is at most
7% of its real size (if & = 0.07) when an acoustically homo-
geneous reconstruction model is used. Our studies of the
effects on the reconstruction of the errors in the boundary
profile, shown in Fig. 10(e) and Fig. 11(e), reveal that this
leve! of error has little effect on the images reconstructed
from a heterogeneous model. We intend to implement this
method in our future work.

The sccond method for determining ¥ is the coregistra-
tion of ultrasound B-scan imaging and TAT. In principle,
this can be accomplished in the same set-up. The TAT
data is acquired, then the transducers work in pulse-echo
mode to determine an approximate . This boundary in-
formation can be included in the reconstruction algorithm
of TAT.

D. Differences Between TAT and UT

The studies we presented in Section III show that there
should be no severe amplitude distortion in breast TAT,
but severe amplitude distortion caused by refraction has
been observed in both narrowband and broadband breast
UT [15). The difference between the effects of acoustic het-
crogeneity on TAT aud UT can be explained by the dif-
ferent central frequencies. In UT, the central frequency
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is above 3 MHz, and in TAT the central frequency is be-
low 1 MHz. The higher frequency in UT results in stronger
wavefront distortion due to the following reasons. First, the
scattering effect increases rapidly with frequency; second,
the minimum detection distance for avoiding strong aru-
plitude distortion caused by an acoustic lens, which can be
a boundary segment or a small inclusion, extends farther
with increasing frequency. Substituting the following pa-
rameters for UT, lsp, < 10 ¢cm, A = 0.5 mm, and o = 0.07
into (20), we have lp, p > 9.8 cm. We notice that the trans-
ducer or array was placed closer than the required distance
to the breast [15}, [16]. Therefore, it is not surprising to
ohserve the strong interference effect in UT.

Another imnportant differcnce between TAT and UT is
that there is no speckle in our TAT images [11]. Speckle
is an important factor limiting the quality of pure ultra-
sonic imaging. In our technology, the detected signals are
primary acoustic waves rather than reflective or scattered
waves as in UT. Furthermore, the temporal frequency of
the acoustic signals lies in a range from 0 to 1.5 MHz,
which is only weakly scattered in the tissues. However, the
issuc of image speckle in more realistic medical imaging
applications is a topic for future consideration.

E. Miscellaneous

Our analysis and numerical simulations have shown
that breast TAT images can survive acoustic heterogene-
ity. The ultimate test. however, will come from clinical ex-
periments on the breast in which the motion artifacts due
to breathing and cardiac movement may introduce blur-
ring. Such blurring of images is estimated to be on the
order of the movement amplitude. To correct the blurring,
we can monitor the breast motion, for example, placing
a microwave absorber on the breast surface as a marker.
Then the data on the breast motion can be used in the
reconstructions to shift the detectors’ positions and, con-
sequently, compensate for the breast’s displacement.

VII. CONCLUSIONS

The effects of acoustic heterogeneity on TAT in the
breast are studicd. Qur analysis shows that the ampli-
tude distortion in thc breast TAT is minor. There is no
multipath interference in the breast TAT with a convex
parenchyma wall, and the amplitude distortion also is not
severe for concave boundary, because the TAT signals are
broadband, have low central frequency, and expcrience
only one-way transmission through the parenchyma wall.
Therefore we consider only phase distortion in our numer- .
ical studies. The numerical results on the spread of point
sources and boundaries caused by the phase distortion are
in good agreement with the predictions of the proposed
formula. Tt is shown that phase distortion can be com- -
pensated for when complete or partial information on the
distribution of acoustic velocity in the breast is included in
the reconstruction. It is found that improvement in the re-
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sults is more sensitive to mcasurement error in vy, v, than
Z. Based on this sensitivity study, an approach to imple-
ment our compensation method using only TAT data is
proposed. The differences between breast TAT and breast
ultrasound imaging in relation to the effects of acoustic
heterogeneity and speckles arc accounted for by differences
in their central frequency of ultrasound and detection con-
figuration.

APPENDIX A
DERIVATION OF (11)

Assume that the concave boundary can be approxi-
mated by an arch with a radius R; > a, where a is half
the size of the boundary scgment. Two rays are refracted
at points B) and B; in Fig. 4, where B, has a small dis-
placement from B, along the boundary. According to the
refraction law, we have:

sinf; = (1~ a)sing,

cos 91(101 = (1 - 0’) cos ¢ld¢| ’ (32)

where dg, is the difference between the incidence angles
of the two rays and df, is the transmission one. They can
be expressed as:

do; = (1 - Bicosh, °°50‘) d
ls,p

d¢, = (5125_4‘1 + 1) da,
lss,

(33)

where lsp, and I, p are the distances from the boundary
point B; to source S and detector D, respectively, and
df = lp, , /R;. Combining the above equations, we have
the imaging formula for the boundary segment:

cos? cos®0,  _ cosi/(1-a)—cos¢,
Isp, Ips,(1-a) Ry ‘ (34)

Because in our breast mode! « = 0.1 is small, the above
equation can be further simplified to (11) after using 6 ~
é1.

APPENDIX B
DERIVATION OF (30)

The first iteration in TCG is equivalent to the back-
projection method {34]. In backprojection for an acousti-
cally homogeneous TAT, p(r, t), the signal detected at r
and time t is projected back to a sphere with a radius of
tv,o and a center at r. It is shown that the boundaries of
objects ean be reconstructed correctly with the backpro-
jection method [35]. Let us consider a model illustrated
in Fig. 7 to cstimate the sprcad of source S along linc
DD, where Dy and D; are two detectors, S, is the in-
tersection of DyD, with the backprojection arch of the
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signal transmitted by source S and detected by detector
D,, S; is the corresponding onc at D,, and ¥ represents
the parenchyma wall. If there is no crror in computing
TOFs, §1, Sp, and S will be onc point; therefore, a point
image of source S can be recovered. In an acoustically het-
erogencous model, however, the flight-time crrors caused
by the approximation of vp by v, in the reconstruction
result in the splitting of S; and S, from S, where ls,s and
ls,s can be estimated by the multiplication of the flight-
time errors with vy, Is;s = lp,5(1 — ve0/vp) = alg,s
and lg,s = lg,s(l - v,0/v;) = alg,s. Combining them,
we have (30) for the spread width of source S along line
D1 D,. Similar analysis can be applied to estimating BSW
as well.
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